Cite

1. Benigni R, Bossa C. Structure alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational database technology. Mutat Res 2008;659:248-61. doi: 10.1016/j.mrrev.2008.05.003Search in Google Scholar

2. Benigni R, Bossa C. Structural Alerts of mutagens and cacinogens. Curr Comput - Aid Drug Design 2006;2:169-76. doi: 10.2174/157340906777441663Search in Google Scholar

3. Farmer PB. DNA and protein adducts as markers of genotoxicity. Toxicol Lett 2004;149:3-9. doi: 10.1016/j. toxlet.2003.12.015Search in Google Scholar

4. Powell CL, Swenberg JA, Rusyn I. Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Lett 2005;229:1-11. doi: 10.1016/j. canlet.2004.12.002Search in Google Scholar

5. Klaunig J, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogensesis. Toxicol Appl Phramacol 2011;254:86-99. doi: 10.1016/j.taap.2009.11.028Search in Google Scholar

6. Pulliero A, Godschalk R, Andreassi MG, Curfs D, Van Schooten FJ, Izzotti A. Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015;218:293-312. doi: 10.1016/j.ijheh.2015.01.007Search in Google Scholar

7. Tanaka T, Shimizu M, Kochi T, Moriwaki H. Chemicalinduced carcinogenesis. J Exp Clin Med 2013;5:203-9. doi: 10.1016/j.jecm.2013.10.009Search in Google Scholar

8. Helguera AM, Cordeiro N, Perez MA. Combes R, Perez Gonzales M. QSAR modeling of the rodent carcinogenicity of nitrocompounds. Bioorg Med Chem 2008;16:3395-407. doi: 10.1016/j.bmc.2007.11.029Search in Google Scholar

9. Gonzales-Perez M, Gomez-Bombarelli R, Arenas-Valganon J, Perez-Prior T, Garcia-Santos P, Calle E, Casado J. Connecting the chemical and biological reactivity of epoxides. Chem Res Toxicol 2012;25:2755-62. doi: 10.1021/ tx300389zSearch in Google Scholar

10. Zhang S, Chen K, Aliaga C, Sun Y, Lin J, Sharma A, Amin S, El-Bayoumy K. Identification and quantification of DNA adducts in the oral tissues of mice treated with the environmental carcinogen dibenzo[a,l]pyrene by HPLC-MS/ MS. Chem Res Toxicol 2011;24:1297-303. doi: 10.1021/ tx200188jSearch in Google Scholar

11. Miller E, Miller C. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 1981;47:2327-45. PMID: 727288910.1002/1097-0142(19810515)47:10<2327::AID-CNCR2820471003>3.0.CO;2-ZSearch in Google Scholar

12. La DK, Swenberg JA. DNA adducts: biological markers of exposure and potential applications to risk assesment. Mutat Res 1996;365:129-46. doi: 10.1016/S0165-1110(96)90017-2Search in Google Scholar

13. Schwaab S, Czich A, Epe B, Kaina B, Müller L, Pollet D, Utesch D. Photochemical genotoxicity: principles and test methods: Report of a GUM task force. Mutat Res 2004;566:65-91. doi: 10.1016/S1383-5742(03)00052-8Search in Google Scholar

14. Epe B. DNA damage spectra induced by photosensitization. Photochem Photobiol Sci 2012;11:98-106. doi: 10.1039/ c1pp05190cSearch in Google Scholar

15. Spielmann H, Lovell W, Hoelzle E. In vitro phototoxicity testing. The report and recommendations of ECVAM workshop 2. ATLA 1994;22:314-48.Search in Google Scholar

16. Dennehy M, Richards K, Wernke G, Shyr Y, Liebler D. Cytosolic and nuclear protein targets of thiol-reactive electrophiles. Chem Res Toxicol 2006;19:20-9. doi: 10.1021/ tx050312lSearch in Google Scholar

17. Schultz W, Yarbrough J, Hunter R, Aptula A. Verification of the structural alerts for Michael acceptors. Chem Res Toxicol 2007;20:1359-63. doi: 10.1021/tx700212uSearch in Google Scholar

18. Delaney J, Essgmann J. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008;21:232-52. doi: 10.1021/tx700292aSearch in Google Scholar

19. Drinkwater NR, Miller JA, Miller EC, Yang N-C. Covalent intercalate binding to DNA in relation to the mutagenicity of hydrocarbon epoxides and N-acetoxy-2-acetylaminofluorene. Cancer Res 1978;38:3247-55. PMID: 356963Search in Google Scholar

20. Ketterer B, Coles B, Meyer DJ. The role of glutathione in detoxication. Environ Healt Persp 1983;49:59-69. PMCID: PMC156913110.1289/ehp.834959Search in Google Scholar

21. Yan Z, Maher N, Torres R, Huebert N. Use of a trapping agent for simultaneous capturing and high-throughput screening of both “soft” and “hard” reactive metabolites. Anal Chem 2007;79:4206-14. doi: 10.1021/ac0701029Search in Google Scholar

22. Zang H, Gates KS. Sequence specificity of DNA alkylation by the antitumor natural product leinamycin. Chem Res Toxicol 2003;16:1539-46. doi: 10.1021/tx0341658Search in Google Scholar

23. Allgayer H, Kolb M, Stuber V, Kruis W. Modulation of base hydroxylation by bile acids and salicylate s in a model of human colonic mucosal DNA putative implications in colonic cancer. DigDisSci 1999; 44: 761 - 7. doi: 10.1023/A:1026670027150Search in Google Scholar

24. Benigni R, Bossa C, Jeliazkova N, Netzeva T, Worth A. The Benigni/Bossa rulebase for mutagenicity and carcinogenicity-a module of Toxtree, 2008 [displayed 28 July 2016]. Available at https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_23241_EN.pdfSearch in Google Scholar

25. Snodin D. Genotoxic impurities: from structural alerts to qualification. Org Proc Res Develop 2010;14:960-76. doi: 10.1021/op100118eSearch in Google Scholar

26. Ellison CM, Sherhod R, Cronin MTD, Enoch SJ. Madden JC, Judson PN. Assessment of methods to define the applicability domain of structural alert models. J Chem Inf Model 2011;51:975-85. doi: 10.1021/ci1000967Search in Google Scholar

27. Kazius J, McGuire R, Bursi R. Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 2005;48:312-20. doi: 10.1021/jm040835aSearch in Google Scholar

28. Benigni R, Bossa C, Tcheremenskaia O. Nongenotoxic carcinogenicity of chemicals: mechanisms of action and early recognition through a new set of structural alerts. Chem Rev 2013;113:2940-57. doi: 10.1021/cr300206tSearch in Google Scholar

29. Goetz ME, Luch A. Reactive species: A cell damaging rout assisting to chemical carcinogens. Cancer Lett 2008;266:73-83. doi: 10.1016/j.canlet.2008.02.035Search in Google Scholar

30. Enoch SJ, Cronin M. Development of new structural alerts suitable for chemical category formation for assigning covalent and non-covalent mechanisms relevant to DNA binding. Mutat Res 2012;743:10-9. doi: 10.1016/j. mrgentox.2011.12.029Search in Google Scholar

31. Schwöbel JA, Koleva Y, Enoch S, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MT. Measurement and estimation of electrophilic reactivity for predictive toxicology. Chem Rev 2011;111:2562-96. doi: 10.1021/ cr100098nSearch in Google Scholar

32. Nash HM, Rongzhen L, Lane WS, Verdinel GL. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. Chem Biol 1997;4:693-702. doi: 10.1016/S1074-5521(97)90225-8Search in Google Scholar

33. Enoch SJ, Cronin MTD, Ellison CM. The use of a chemistrybased profiler for covalent DNA binding in the development of chemical categories for read-across for genotoxicity. ATLA 2011;39:131-45. PMID: 2163967810.1177/02611929110390020621639678Search in Google Scholar

34. Enoch SJ, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2010;40:728-48. doi: 10.3109/10408444.2010.494175Search in Google Scholar

35. Kolšek K, Sollner Dolenc M, Mavri J. Computational study of the reactivity of bisphenol A-3,4-quinone with deoxyadenosine and glutathione. Chem Res Toxicol 2013;26:106-11. doi: 10.1021/tx300411dSearch in Google Scholar

36. Garner RC. The role of DNA adducts in chemical carcinogenesis. Mutat Res 1988;402:67-75. doi: 10.1016/ S0027-5107(97)00283-2Search in Google Scholar

37. Henkler F, Stolpmann K, Luch A. Exposure to polycyclic aromatic hydrocarbons: Bulky DNA adducts and cellular responses. Mol Clin Environ Toxicol 2012;101:107-31. doi: 10.1007/978-3-7643-8340-4_5Search in Google Scholar

38. Veglia F, Matullo G, Vineis P. Bulky DNA adducts and risk of cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003;12:157-60. PMID: 12582026Search in Google Scholar

39. Mukherjee A, Lavery R, Bagchi B, Hyne JT. On the molecular mechanism of drug intercalation into DNA: A simulation study of the intercalation pathway, free energy, and DNA structural changes. J Am Chem Soc 2008;130:9747-55. doi: 10.1021/ja8001666Search in Google Scholar

40. Jałoszyński P, Jaruga P, Oliński R, Biczysko W, Szyfter W, Nagy E, Möller L, Szyfter K. Oxidative DNA base modifications and polycyclic aromatic hydrocarbon DNA adducts in squamous cell carcinoma of larynx. Free Radic Res 2003;37:231-40. doi: 10.1080/1071576021000041014Search in Google Scholar

41. Lenne-Samuel N, Janel-Bintz R, Kolbanovskiy A, Geacintov NE, Fuchs RP. The processing of a Benzo(a)pyrene adduct into a frameshift or a base substitution mutation requires a different set of genes in Escherichia coli. Mol Microbiol 2000;38:299-307. doi: 10.1046/j.1365-2958.2000.02116.xSearch in Google Scholar

42. Heidrun Ellinger-Ziegelbauer H, Stuart B, Wahle B, Werner B, Juergen AH. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 2005;575:61-84. doi: 10.1016/j. mrfmmm.2005.02.004Search in Google Scholar

43. Butterworth EB. A classification framework and practical guidance for establishing a mode of action for chemical carcinogens. Regul Toxicol Pharmacol 2006;45:9-23. doi: 10.1016/j.yrtph.2006.01.011Search in Google Scholar

44. Marnett LJ, Burcham PC. Endogenous DNA adducts: potential and paradox. Chem Res Toxicol 1993;6:771-85. doi: 10.1021/tx00036a005Search in Google Scholar

45. Wiseman H, Kaur H, Halliwell B. DNA damage and cancer: measurement and mechanism. Cancer Lett 1995;93:113-20. doi: 10.1016/0304-3835(95)03792-USearch in Google Scholar

46. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010;70:27-56. doi: 10.1016/B978-0-12-380866-0.60002-2Search in Google Scholar

47. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2010;21:5400-13. doi: 10.1038/sj. onc.1205651Search in Google Scholar

48. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007;1:19-25. doi: 10.1016/j.molonc.2007.01.001Search in Google Scholar

49. Polo SE. Almouzni G. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett 2005:220:1-9. doi: 10.1016/j.canlet.2004.08.024Search in Google Scholar

50. Momparler RL. Cancer epigenetics. Oncogene 2003;22:6479-83. doi: 10.1038/sj.onc.1206774Search in Google Scholar

51. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, Stevenson DE, Walborg EF. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect 1998;106:289-95. doi: 10.2307/3433929Search in Google Scholar

52. Crews D, McLachlan JA. Epigenetic, evolution, endocrine disruption, health, and disease. Endocrinology 2006;147(6 Suppl):S4-10. doi: 10.1210/en.2005-1122Search in Google Scholar

53. Darbre PD. Environmental oestrogens, cosmetics and breast cancer. Best Pract Res Clin Endocrinol Metab 2006;20:121-43. doi: 10.1016/j.beem.2005.09.007Search in Google Scholar

54. Birnbaum LS, Fenton SE. Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect 2003;111:389-94. PMCID: PMC124141710.1289/ehp.5686124141712676588Search in Google Scholar

55. Choi SM, Yoo SD, Lee BM. Toxicological charactersistics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. J Toxicol Environ Health 2004;7:1-23. doi: 10.1080/10937400490253229Search in Google Scholar

56. Harvey PW, Johnson I. Approaches to the assessment of toxicology data with endpoints related to endocrine disruption. J Appl Toxicol 2002;22:241-7. doi: 10.1002/ jat.854Search in Google Scholar

57. Zhong M, Nie X, Yan A, Yuan Q. (2013) Carcinogenicity prediction of noncongeneric chemicals by a support vector machine. Chem Res Toxicol 2013;26:741-9. doi: 10.1021/ tx4000182Search in Google Scholar

58. Plošnik A, Zupan J, Vračko M. Evaluation of toxic endpoints for a set of cosmetic ingredients with CAESAR models. Chemosphere 2015;120:492-9. doi: 10.1016/j. chemosphere.2014.09.013Search in Google Scholar

59. Ferrari T, Gini G. An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 2010;4:1-6. doi: 10.1186/1752-153X-4- S1-S2Search in Google Scholar

60. Cariello N F, Wilson JD, Britt BH, Wedd DJ, Burlinson B, Gombar V. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Mutagenesis 2002;17:321-9. doi: 10.1093/mutage/17.4.321Search in Google Scholar

61. Serafimova R, Gatnik FM, Worth A. Review of QSAR models and software tools for predicting genotoxicity and carcinogenicity, 2010 [displayed 29 July 2016]. Available at https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/EUR_24427_EN.pdfSearch in Google Scholar

62. Klopman G. The MultiCASE program II. Baseline activity identification algorithm (BAIA). J Chem Inf Comput Sci 1998;38:78-81. doi: 10.1021/ci9700790 Search in Google Scholar

63. QSAR Toolbox User Manual [displayed 17 April 2015]. Available at http://www.oecd.org/chemicalsafety/riskassessment/TB3%200_GettingStarted_rev2.pdFSearch in Google Scholar

64. Ideaconsult. Toxtree User Manual [displayed 17 April 2015]. Available at https://eurl-ecvam.jrc.ec.europa.eu/laboratoriesresearch/predictive_toxicology/doc/Toxtree_user_manual.pdfSearch in Google Scholar

65. Helma C. Lazy structure-activity relationships (LAZAR) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol Divers 2006;10:147-58. doi: 10.1007/ s11030-005-9001-5Search in Google Scholar

66. Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. LAZAR: a modular predictive toxicology framework. Front Pharmacol 2013;4:1-8. doi: 10.3389/ fphar.2013.00038Search in Google Scholar

67. Worth A, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A, Serafimova R. A framework for assessing in silico toxicity predictions: case studies with selected pesticides. JRC report EUR 24705 EN, 2011.Search in Google Scholar

68. Leadscope webpage [displayed 19 February 2016]. Available at http://www.leadscope.comSearch in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other