Epidemiological trends of iodine-related thyroid disorders: an example from Slovenia

Open access

Abstract

The epidemiology of thyroid disorders is significantly associated with iodine supply. In 1999, Slovenia increased iodine content in kitchen salt from 10 mg to 25 mg of potassium iodide per kg of salt. According to the WHO criteria, Slovenia shifted from a mildly iodine-deficient country to a country with adequate iodine intake. Ten years after the increase in iodine intake, the incidence of diffuse goitre and thyroid autonomy decreased. Now patients with diffuse goitre and thyroid autonomy reach older age than the patients before the increase in iodine intake. In addition, patients with thyroid autonomy are less frequently hyperthyroid than ten years ago and iodine-induced hyperthyroidism is less severe. The incidence of highly malignant thyroid carcinoma has also dropped. However, the incidence of Hashimoto’s thyroiditis increased, most probably in genetically predisposed individuals. Over the last ten years, many animal and in vitro studies evaluated the effects of endocrine disrupting chemicals (EDC) on various aspects of the thyroid function. They mostly studied the effects of polychlorinated biphenyls (PCBs) and dioxins, brominated flame retardants, phthalates, bisphenol A, perfluorinated chemicals, and perchlorate. However, human studies on the effects of EDCs on the thyroid function are very scarce, especially the long-term ones. What they do suggest is that PCBs and dioxins interfere with the transport of thyroid hormones and adversely affect the thyroid function. Many authors agree that iodine deficiency predisposes the thyroid gland to harmful effects of EDCs. Therefore the effects of EDCs in iodine-deficient areas could be more severe than in areas with adequate iodine intake.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zaletel K Gaberšček S. Hashimoto’s thyroiditis: from genes to the disease. Curr Genomics 2011;12:576-88. doi: 10.2174/138920211798120763

  • 2. Laurberg P Cerqueira C Ovesen L Rasmussen LB Perrild H Andersen S Pedersen IB Carlé A. Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab 2010;24:13-27. doi: 10.1016/j.beem.2009.08.013

  • 3. Zimmermann MB. Iodine requirements and the risks and benefits of correcting iodine deficiency in populations. J Trace Elem Med Biol 2008;22:81-92. doi: 10.1016/j.jtemb.2008.03.001

  • 4. Köhrle J. Environment and endocrinology: The case of thyroidology. Ann Endocrinol (Paris) 2008;69:116-22. doi: 10.1016/j.ando.2008.02.008

  • 5. Zaichick V Zaichick S. Normal human intrathyroidal iodine. Sci Total Environ 1997;206:39-56. doi: 10.1016/S0048-9697(97)00215-5

  • 6. Hays MT. Estimation of total body iodine in normal young men. Thyroid 2001;11:671-5. doi: 10.1089/105072501750362745

  • 7. De la Vieja A Dohan O Levy O Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 2000;80:1083-105. PMID: 10893432

  • 8. Dunn JT Dunn AD. Update on intrathyroidal iodine metabolism. Thyroid 2001;11:407-13. doi: 10.1089/105072501300176363

  • 9. Ross DS. Serum thyroid-stimulating hormone measurement for assessment of thyroid function and disease. Endocrinol Metab Clin North Am 2001;30:245-64. doi: 10.1016/S0889-8529(05)70186-9

  • 10. Eng PH Cardona GR Previtti MC Chin WW Braverman LE. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. Eur J Endocrinol 2001;144:139-44. PMID: 11182750

  • 11. Maia AL Kim BW Huang SA Harney JW Larsen PR. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Invest 2005;115:2524-33. PMID: 16127464

  • 12. Russel W Harrison RF Smith N Darzy K Shalet S Weetman AP Ross RJ. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab 2008;93:2300-6. doi: 10.1210/jc.2007-2674

  • 13. Cheng SY Leonard JL Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010;31:139-70. doi: 10.1210/er.2009-0007

  • 14. Hammes SR Davis PJ. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab 2015;29:581-93. doi: 10.1016/j.beem.2015.04.001

  • 15. Zoeller RT Rovet J. Timing of thyroid hormone action in the developing brain: Clinical observations and experimental findings. J Neuroendocrinol 2004;16:809-18. doi: 10.1111/j.1365-2826.2004.01243.x

  • 16. Zimmermann MB Jooste PL Pandav CS. Iodine deficiency disorders. Lancet 2008;372:1251-62. doi: 10.1016/S0140-6736(08)61005-3

  • 17. Gaberšček S Zaletel K. Thyroid physiology and autoimmunity in pregnancy and after delivery. Expert Rev Clin Immunol 2011;7:697-706. doi: 10.1586/eci.11.42

  • 18. Zaletel K Hojker S. Jodni deficit u Sloveniji [Iodine deficiency in Slovenia in Bosnian]. In: Tahirović H Konjhodžić F editors. Jodni deficit u regionu [Iodine deficiency in the region in Bosnian]. Sarajevo: Akademija nauka i umjetnosti Bosne i Hercegovine; 2000. p. 61-9.

  • 19. Zaletel K Gaberšček S Pirnat E Krhin B Hojker S. Ten-year follow-up of thyroid epidemiology in Slovenia after increase in salt iodization. Croat Med J 2011;52:615-21. doi: 10.3325/cmj.2011.52.615

  • 20. Stimec M Kobe H Smole K Kotnik P Sirca-Campa A Zupancic M Battelino T Krzisnik C Fidler Mis N. Adequate iodine intake of Slovenian adolescents is primarily attributed to excessive salt intake. Nutr Res 2009;29:888-96. doi: 10.1016/j.nutres.2009.10.011

  • 21. Ribič CH Zakotnik JM Vertnik L Vegnutti M Cappuccio FP. Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. Public Health Nutr 2010;13:1803-9. doi: 10.1017/S136898001000025X

  • 22. Fister P Gaberscek S Zaletel K Krhin B Hojker S Gersak K. Thyroid function in the third trimester of pregnancy and after delivery in an area of adequate iodine intake. Int J Gynaecol Obstet 2011;112:52-5. doi: 10.1016/j.ijgo.2010.07.029

  • 23. Krohn K Paschke R. Progress in understanding the etiology of thyroid autonomy. J Clin Endocrinol Metab 2001;86:3336-45. PMID: 11443209

  • 24. Gaberšček S Bajuk V Zaletel K Pirnat E Hojker S. Beneficial effects of adequate iodine supply on characteristics of thyroid autonomy. Clin Endocrinol (Oxf) 2013;79:867-73. doi: 10.1111/cen.12215

  • 25. Burgi H Kohler M Morselli B. Thyrotoxicosis incidence in Switzerland and benefit of improved iodine supply. Lancet 1998;352:1034. doi: 10.1016/S0140-6736(05)60076-1

  • 26. Baltisberger BL Minder CE Burgi H. Decrease of incidence of toxic nodular goitre in a region of Switzerland after full correction of mild iodine deficiency. Eur J Endocrinol 1995;132:546-9. doi: 10.1530/eje.0.1320546

  • 27. Andersen S Iversen F Terpling S Pedersen KM Gustenhoff P Laurberg P. More hypothyroidism and less hyperthyroidism with sufficient iodine nutrition compared to mild iodine deficiency-a comparative population-based study of older people. Maturitas 2009;64:126-31. doi: 10.1016/j.maturitas.2009.08.007

  • 28. Gaberšček S Bajuk V Zaletel K Pirnat E Hojker S. Beneficial effect of an increase in iodine supply on the type and severity of iodine-induced thyroid disorders. In: 38th Annual Meeting of the European Thyroid Association; 6-10 Sep 2014; Santiago de Compostela Spain. Eur Thyroid J 2014;3(Suppl 1):154.

  • 29. Besic N Hocevar M Zgajnar J. Lower incidence of anaplastic carcinoma after higher iodination of salt in Slovenia. Thyroid 2010;20:623-6. doi: 10.1089/thy.2009.0404

  • 30. Heydarian P Ordookhani A Azizi F. Goiter rate serum thyrotropin thyroid autoantibodies and urinary iodine concentration in Tehranian adults before and after national salt iodization. J Endocrinol Invest 2007;30:404-10. PMID: 17598973

  • 31. Aghini-Lombardi F Antonangeli L Martion E Vitti P Maccherini D Leoli F; Rago T Graso L Valeriano R Balestrieri A Pinchera A. The spectrum of thyroid disordes in an iodine-deficient community: the Pescopagano survey. J Clin Endocrinol Metab 1999;84:561-6. doi: 10.1210/jcem.84.2.5508#sthash.G0AaDXRx.dpuf

  • 32. Hollowell JG Staehling NW Flanders WD Hannon WH Gunter EW Spencer CA Braverman LE. Serum TSH T(4) and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489-99. PMID: 11836274

  • 33. Kasagi K Takahashi N Inoue G Honda T Kawachi Y Izumi Y. Thyroid function in Japanese adults as assessed by a general health checkup system in relation with thyroid-related antibodies and other clinical parameters. Thyroid 2009;19:937-44. doi: 10.1089/thy.2009.0205

  • 34. Li Y Teng D Shan Z Teng X Guan H Yu X Fan C Chong W Yang F Dai H Gu X Yu Y Mao J Zhao D Li J Chen Y Yang R Li C Teng W. Antithyroperoxidase and antithyroglobulin antibodies in a five-year follow-up survey of populations with different iodine intakes. J Clin Endocrinol Metab 2008;93:1751-7. doi: 10.1210/jc.2007-2368

  • 35. Rose NR Bonita R Burek CL. Iodine: an environmental trigger of thyroiditis. Autoimmune Rev 2002;1:97-103. PMID: 12849065

  • 36. Burek CL Talor MV. Environmental triggers of autoimmune thyroiditis. J Autoimmun 2009;33:183-9. doi: 10.1016/j.jaut.2009.09.001

  • 37. Fountoulakis S Philippou G Tsatsoulis A. The role of iodine in the evolution of thyroid disease in Greece: from endemic goiter to thyroid autoimmunity. Hormones (Athens) 2007;6:25-35. PMID: 17324915

  • 38. Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens) 2010;9:28-40. PMID: 20363719

  • 39. Chauhan KR Kodavanti PR McKinney JD. Assesing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin a thyroxine transport protein. Toxicol Appl Pharmacol 2000;162:10-21. PMID: 10631123

  • 40. Boas M Feldt-Rasmussen U Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012;355:240-8. doi: 10.1016/j.mce.2011.09.005

  • 41. Abdelouahab N Mergler D Takser L Vanier C St-Jean M Baldwin M Spear PA Chan HM. Gender differences in the effects of organochlorines mercury and lead on thyroid hormone levels in lakeside communities of Quebec (Canada). Environ Res 2008;107:380-92. doi: 10.1016/j.envres.2008.01.006

  • 42. Goldey ES Kehn LS Lau C; Rehberg GL Crofton KM. Developmental exposure to polychlorinated biphenyls (aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol 1995;135:77-88. PMID: 7482542

  • 43. Zoeller RT Dowling AL Vas AA. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression on RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology 2000;141:181-9. doi: 10.1210/en.141.1.181

  • 44. Purkey HE Palaninathan SK Kent KC Smith C Safe SH Sacchettini JC Kelly JW. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 2004;11:1719-28. doi: 10.1016/j.chembiol.2004.10.009

  • 45. Iwasaki T Miyazaki W Takeshita A Kuroda Y Koibuchi N. Polychlorinated biphenyls supress thyroid hormone-induced transactivation. Biochem Biophys Res Commun 2002;299:384-8. doi: 10.1016/S0006-291X(02)02659-1

  • 46. Sjodin A Jones RS Focant JF Lapeza C Wang RY McGahee EE 3rd Zhang Y Turner WE Slazyk B Needham LL Patterson DG Jr. Retrospective time-trend study of polybrominated diphenyl ether and polybromianted and polychlorinated biphenyl levels in human serum from the United States. Environ Health Perspect 2004;112:654-8. PMID: 15121506

  • 47. Hallgren S Sinjari T Hakansson H Darnerud PO. Effects of polybrominated diphenyle ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol 2001;75:200-8. PMID: 11482517

  • 48. Jagnytsch O Opitz R Lutz I Kloas W. Effects of tetrabromobisphenol a on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis. Environ Res 2006;101:340-8. doi:10.1016/j.envres.2005.09.006

  • 49. Kitamura S Kato T Iida M Jinno N Suzuki T Ohta S Fujimoto N Hanada H Kashiwagi K Kashiwgi A. Anti-thyroid hormonal activity of tetrabromobisphenol A a flame retardant and related compounds: Affinity to the mammalian thyroid hormones receptor and effect on tadpole metamorphosis. Life Sci 2005;76:1589-601. doi: 10.1016/j.lfs.2004.08.030

  • 50. Scollon EJ Carr JA Cobb GP. The effect of flight fasting and pp’-DDT on thyroid hormones and corticosterone in Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelli. Comp Bichem Physiol C Toxicol Pharmacol 2004;137:179-89. doi: 10.1016/j.cca.2004.01.004

  • 51. Schmutzler C Hamann I Hofmann PJ Kovasc G Stemmler L Mentrup B Schomburg L Ambrugger P Gruters A Seidlova-Wuttke D Jarry H Wuttke W Kohrle J. Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver heart and kidney. Toxicology 2004;205:95-102. doi: 10.1016/j.tox.2004.06.041

  • 52. Olsen GW Zobel LR. Assessment of lipid hepatic and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health 2007;81:231-46. doi: 10.1007/s00420-007-0213-0

  • 53. Chang SC Thibodeaux JR Eastvold ML Ehresman DJ Bjork JA Froehlich JW Lau CS Singh RJ Wallace KB Butenhodd JL. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology 2007;234:21-33. doi: doi:10.1016/j.tox.2007.01.020

  • 54. Melzer D Rice N Depledge MH Henley WE Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 2010;118:686-92. doi: 10.1289/ehp.0901584

  • 55. Boas M Frederiksen H Feldt-Rasmussen U Skakkebaek NE Hegedus L Hilsted L Juul A Main KM. Childhood exposure to phthalates: association with thyroid function insulin-like growth factor I and growth. Environ Health Perspect 2010;118:1458-64. doi: 10.1289/ehp.0901331

  • 56. Meeker JD Calafat AM Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 2007;115:1029-34. doi: 10.1289/ehp.9852

  • 57. Huang PC Kup PL Guo YL Liao PC Lee CC. Association between urinary phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod 2007;22:2715-22. PMID: 17704099

  • 58. Moriyama K Tagami T Akamizu T Usui T Saijo M Kanamoto N Hataya Y Shimatsu A Kuziya H Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 2002;87:5185-90. PMID: 12414890

  • 59. Zoeller TR Bansal R Parris C. Bisphenol A an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro increases serum thyroxine and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 2005;146:607-12. doi: 10.1210/en.2004-1018

  • 60. Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 2003;14:327-33. PMID: 12946875

  • 61. Dohán O Portulano C Basquin C Reyna-Neyra A Amzel LM Carrasco N. The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc Natl Acad Sci USA 2007;104:20250-5. doi: 10.1073/pnas.0707207104

  • 62. Blount BC Pirkle JL Osterloh JD Valentin-Blasini L. Caldwell KL. Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect 2006;114:1865-71. doi: 10.1289/ehp.9466

  • 63. Steinmaus C Miller MD Howd R. Impact of smoking and thiocyanate on perchlorate and thyroid hormone associations in the 2001-2002 national health and nutrition examination survey. Environ Health Perspect 2007;115:1333-8. doi: 10.1289/ehp.10300

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 472 274 10
PDF Downloads 227 125 12