Open Access

Simple graph-theoretical model for flavonoid binding to P-glycoprotein / Jednostavan graf-teorijski model vezivanja flavonoida za P-glikoprotein / Jednostavan graf-teorijski model vezivanja flavonoida za P-glikoprotein


Cite

1. Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 1995;33:1061-80. doi: 10.1016/0278-6915(95)00077-110.1016/0278-6915(95)00077-1Search in Google Scholar

2. Scott BC, Butler J, Halliwell B, Aruoma OI. Evaluation of the antioxidant actions of ferulic acid and catechins. Free Radic Res Commun 1993;19:241-53. PMID: 750745610.3109/107157693090565127507456Search in Google Scholar

3. Teixeira S, Siquet C, Alves C, Boal I, Marques MP, Borges F, Lima JLFC, Reis S, Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic Biol Medic 2005;39:1099-108. doi: 10.1016/j.freeradbiomed. 2005.05.028Search in Google Scholar

4. Cohen SD, Kennedy JA. Plant metabolism and the environment: Implications for managing phenolics. Crit Rev Food Sci Nutr 2010;50:620-43. doi: 10.1080/1040839 0802603441Search in Google Scholar

5. Vinson JA. Flavonoids in foods as in vitro and in vivo antioxidants. Adv Exp Med Biol 1998;439:151-64. doi: 10.1007/978-1-4615-5335-9_1110.1007/978-1-4615-5335-9_119781301Search in Google Scholar

6. Johnson J, de Mejia EG. Dietary factors and pancreatic cancer: The role of food bioactive compounds. Mol Nutr Food Res 2011;55:58-73. doi: 10.1002/mnfr.20100042010.1002/mnfr.20100042021207513Search in Google Scholar

7. Perron NR, Brumaghin JL. A review of the antioxidant mechanisms of polyphenol Compounds related to iron binding. Cell Biochem Biophys 2009;53:75-100. doi: 10.1007/s12013-009-9043-x10.1007/s12013-009-9043-x19184542Search in Google Scholar

8. Xiao J, Chen T, Cao H, Chen L, Yang F. Molecular propertyaffinity relationship of flavonoids and flavonoids for HSA in vitro. Mol Nutr Food Res 2011;55:310-7. doi: 10.1002/ mnfr.20100020810.1002/mnfr.20100020820718051Search in Google Scholar

9. Shi J, Cao H. Molecular structure-affinity relationship of dietary flavonoids for bovine serum albumin. Rev Bras Farmacogn 2011;21:594-600. doi: 10.1590/S0102-695X 2011005000118Search in Google Scholar

10. Xiao J, Cao H, Chen T, Yang F, Liu C, Xu X. Molecular property-binding affinity relationship of flavonoids for common rat plasma proteins in vitro. Biochemie 2011;93:134-40. doi: 10.1016/j.biochi.2010.08.01310.1016/j.biochi.2010.08.01320831890Search in Google Scholar

11. Xiao J, Mao F, Yang F, Zhao Y, Zhang C, Yamamoto K. Interaction of dietary polyphenols with bovine milk proteins: Molecular structure-affinity relationship and influencing bioactivity aspects. Mol Nutr Food Res 2011;55:1637-45. doi: 10.1002/mnfr.20110028010.1002/mnfr.20110028021805622Search in Google Scholar

12. Leveille-Webster CR, Arias IM. The biology of the P-glycoproteins. J Membr Biol 1995;143:89-102. doi: 10.1007/BF0023465510.1007/BF002346557731035Search in Google Scholar

13. Simon SM, Schindler M. Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci USA 1994;91:3497-504. PMID: 790960210.1073/pnas.91.9.3497436077909602Search in Google Scholar

14. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427. doi: 10.1146/annurev.bi.62. 070193.002125Search in Google Scholar

15. Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 1990;38:1277-87. PMID: 197490010.1177/38.9.19749001974900Search in Google Scholar

16. Li Y, Wang Y, Yang L, Zhang S, Liu C. Structural determinants of flavones interacting with the C-terminal nucleotidebinding domain as P-glycoprotein inhibitors. Internet Electron J Mol Des 2006;5:1-12.Search in Google Scholar

17. Kothandan G, Gadhe CG, Madhaven T, Choi CH, Cho SJ. Docking and 3D-QSAR (quantitative structure activity relationship) studies of flavones, the potent inhibitors of p-glycoprotein targeting the nucleotide binding domain. Eur J Med Chem 2011;46:4078-88. doi: 10.1016/j.ejmech. 2011.06.008Search in Google Scholar

18. Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt P-A. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Eur J Pharm Sci 2009;36:254-64. doi: 10.1016/j.ejps.2008.09.00910.1016/j.ejps.2008.09.00918955135Search in Google Scholar

19. Raos N, Miličević A. Estimation of stability constants of coordination compounds using models based on topological indices. Arh Hig Rada Toksikol 2009;60:123-8. doi: 10.2478/10004-1254-60-2009-192310.2478/10004-1254-60-2009-192319329384Search in Google Scholar

20. Miličević A, Raos N. Prediction of stability constants for copper(II) binding to tetrapeptides containing histidyl residue with graph-theoretical method. Int J Chem Model 2014;6:301-9.Search in Google Scholar

21. Miličević A, Raos N. Graph-theoretical modelling of stability constants of copper(II) complexes with tripeptides containing glycine, glutamic acid, and histidine. Bull Chem Soc Jpn 2015;88:490-5. doi: 10.1246/bcsj.2014035810.1246/bcsj.20140358Search in Google Scholar

22. Miličević A, Raos N. Modelling of copper(II) binding to pentapeptides related to atrial natriuretic factor using the 3χv connectivity index. Arh Hig Rada Toksikol 2015;66:165-70. doi: 10.1515/aiht-2015-66-263110.1515/aiht-2015-66-263126110479Search in Google Scholar

23. Kier LB, Hall LH. Molecular Connectivity in Chemistry and Drug Research. New York: Academic Press; 1976.Search in Google Scholar

24. Hall LH, Kier LB. The relation of molecular connectivity to molecular volume and biological activity. Eur J Med Chem 1981;16:399-407.Search in Google Scholar

25. Miličević A, Nikolić S, Trinajstić N. Toxicity of aliphatic ethers: A comparative study. Mol Diversity 2006;10:95-9. doi: 10.1007/s11030-005-9006-010.1007/s11030-005-9006-016710807Search in Google Scholar

26. Medić-Šarić M, Maleš Ž, Šarić S, Brantner A. Quantitative modeling of flavonoid glycosides isolated from Paliurus spina-christi Mill. Croat Chem Acta 1996;69:1603-16.Search in Google Scholar

27. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV. Virtual computational chemistry laboratory-design and description. J Comput Aided Mol Des 2005;19:453-63. doi: 10.1007/ s10822-005-8694-y10.1007/s10822-005-8694-y16231203Search in Google Scholar

28. Virtual Computational Chemistry Laboratory [display 14 March 2016]. Available at http://www.vcclab.orgSearch in Google Scholar

29. Enhanced NCI Database Browser 2.2 [displayed 14 March 2016]. Available at http://cactus.nci.nih.gov/ncidb2.2/Search in Google Scholar

30. Kier LB, Hall LH. Molecular connectivity VII: Specific treatment to heteroatoms. J Pharm Sci 1976;65:1806-9. doi: 10.1002/jps.260065122810.1002/jps.26006512281032667Search in Google Scholar

31. Kier LB, Hall LH. Molecular Connectivity in Structure- Activity Analysis. New York: Willey; 1986.Search in Google Scholar

32. Randić M. On history of the Randic index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 2008;59:5-124.Search in Google Scholar

33. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f10.1021/ci980090fSearch in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other