Major royal jelly proteins as markers of authenticity and quality of honey / Glavni proteini matične mliječi kao markeri izvornosti i kakvoće meda

Open access

Until now, the properties of honey have been defined based exclusively on the content of plant components in the nectar of given plant. We showed that apalbumin1, the major royal jelly (RJ) protein, is an authentic and regular component of honey. Apalbumin1 and other RJ proteins and peptides are responsible for the immunostimulatory properties and antibiotic activity of honey. For the quantification of apalbumin1, an enzyme-linked immunosorbent assay (ELISA) was developed using polyclonal anti-apalbumin1 antibody. The method is suitable for honey authenticity determination; moreover it is useful for detection of the honey, honeybee pollen and RJ in products of medicine, pharmacy, cosmetics, and food industry, where presences of these honeybee products are declared. Results from the analysis for presence and amount of apalbumin1 in honeys will be used for high-throughput screening of honey samples over the world. On the basis of our experiments which show that royal jelly proteins are regular and physiologically active components of honey we propose to change the definition of honey (according to the EU Honey Directive 2001/110/EC) as follows: Honey is a natural sweet substance produced by honey bees from nectar of plants or from secretions of plants, or excretions of plant sucking insects, which honey bees collect, transform by combining with major royal jelly proteins and other specific substances of their own, deposit, dehydrate, store and leave in the honey comb to ripen and mature.

1. Singhal RS, Kulkarni PR, Rege DV. Honey: Quality criteria. In: Singhal RS, Kulkarni PR, Reg DV, editors. Handbook of indices of food quality and authenticity. Chapter 7. Cambridge. Woodhead Publishing Ltd.; 1997. p. 358-85.

2. Israili ZH. Antimicrobial properties of honey. Am J Ther 2014;21:304-23. doi: 10.1097/MJT.0b013e318293b09b

3. Bogdanov S. Antibacterial substances in honey. Bee Products Science 2008;1-10.

4. Irish JS, Blair S, Carter DA. The antibacterial activity of honey derived from Australian flora. PLoS One 2011;6:e18229. doi: 10.1371/journal.pone.0018229

5. Šimúth J, Bíliková K, Kováčová E, Kuzmová Z, Schroeder W. Immunochemical approach to detection of adulteration in honey: physiologically active royal jelly protein stimulating TNF-α release is a regular component of honey.J Agric Food Chem 2004;52:2154-8. doi: 10.1021/jf034777y

6. Bíliková K, Wu G, Šimúth J. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 2001;32:275-83. doi: 10.1051/apido:2001129

7. Bíliková K, Mirgorodskaya E, Bukovská G, Gobom J, Lehrach H, Šimúth J. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics 2009;9:2131-8. doi: 10.1002/ pmic.200800705

8. Brudzynski K, Abubaker K, St-Martin L, Castle A. Reexamining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front Microbiol 2011;2:213. doi: 10.3389/fmicb.2011.00213

9. de la Fuente E, Sanz ML, Martinez-Castro I, Sanz J, Ruiz- Matute AI. Volatile and carbohyrate composition of rare unifloral honeys from Spain. Food Chem 2007;105:84-93. doi: 10.1016/j.foodchem.2007.03.039

10. Arvanitoyannis IS, Chalhoub C, Gotsiou P, Lydakis- Simantiris N, Kefalas P. Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit Rev Food Sci Nutr 2005;45:193-203. doi: 10.1080/10408690590956369

11. Johanson R. Food Fraud and “Economically Motivated Adulteration” of Food and Food Ingredients, CRS Report January 2014 [displayed 4 December 2015]. Available at http://fas.org/sgp/crs/misc/R43358.pdf

12. Ruoff K, Luginbuhl W, Kunzli R, Iglesias MT, Bogdanov S, Bosset JO, von der Ohe K, von der Ohe W, Amado R. Authentication of the botanical and geographic origin of honey by mid-infrared spectroscopy. J Agric Food Chem 2006;54:6873-80. doi: 10.1021/jf060838r

13. Tomás-Barberán FA, Martos I, Ferreres F, Radovic BS, Anklam E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 2001;81:485-96. doi: 10.1002/jsfa.836

14. Pichichero E, Canuti L, Canini A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J Sci Food Agric 2009;89:609-16. doi: 10.1002/jsfa.3484

15. Siede R, Schmidt C, Büchler R. A PCR based apple detection method as a complementary instrument for the honey quality assessment. Dtsch Lebensmittel-Rundschau 2004;100:381-4.

16. Molan PC. Why honey is effective as a medicine. 2. The scientific explanation of its effects. Bee World 2001;82:22-40. doi: 10.1080/0005772X.2001.11099498

17. Cooper RA, Molan PC, Harding KG. The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol 2002;93:857-63. PMID: 12392533

18. Cooper RA. Honey in wound care: antimicrobial properties.GMS Krankenhhyg Interdiszip 2007;2(2):Doc51. PMCID: PMC2831240

19. White JWJr, Rudyj ON. The protein content of honey. J Apicult Res 1978;17:234-8.

20. Azeredo LC, Azeredo MAA, de Souza RS, Dutra VML.Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem 2003;80:249-54. doi: 10.1016/S0308-8146(02)00261-3

21. Ohashi K, Sawata M, Takeuchi H, Natori S, Kubo T.Molecular cloning of cDNA and analysis of expression of the gene for α-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem Biophys Res Commun 1996;221:380-385. PMID: 8619864

22. Scheparts, A. The glucose oxidase of honey. II. Stereochemical substrate specificity. Biochim Biophys Acta 1965;96:334-6. doi:10.1016/0005-2787(65)90597-6

23. Pontoh J, Low NH. Purification and characterization of β-glucosidase from honeybees (Apis mellifera). Insect Biochem Mol Biol 2002;32:679-90. doi: 10.1016/S0965-1748(01)00147-3

24. Babcan S, Pivarnik LF, Rand AG. Honey amylase activity and food starch degradation. J Food Sci 2002;67:1625-30. doi: 10.1111/j.1365-2621.2002.tb08695.x

25. Di Girolamo F, D´Amato A, Righetti PG. Assessment of the floral origin of honey via proteomic tools. J Proteomics 2012;75:3688-93. doi: 10.1016/j.jprot.2012.04.029

26. Hanes J, Šimúth J. Identification and partial characterization of the major royal jelly protein of the honeybee (Apis mellifera L). J Apicult Res 1992;31:22-6. doi: 10.1080/00218839.1992.11101256

27. Schmitzová J, Klaudiny J, Albert Š; Schröder W, Schrockengost V, Hanes J, Šimúth J. A family of major royal jelly proteins of the honeybee Apis mellifera. L Cell Mol Life Sci 1998;54:1020-30. doi: 10.1007/s000180050229

28. Šimúth J. Some properties of the main protein of the honeybee (Apis mellifera) royal jelly. Apidologie 2001;32:69-80. doi: 10.1051/apido:2001112

29. Malecová B, Ramser J, O’Brien JK, Janitz M, Júdová J, Lehrach H, Šimúth J. Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene 2003;303:165-75. doi: 10.1016/S0378-1119(02)01174-5

30. The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006;443:931-47. doi: 10.1038/ nature05260

31. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K. Potent antibacterial protein in royal jelly.Purification and determination of the primary structure of royalisin. J Biol Chem 1990;265:11333-7. PMID: 2358464

32. Bíliková K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Šimúth J. Apisimin, a new serine valin-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett 2002;528:125-9.

33. Li J, Ting W, Zhaohui Z, Yinghong P. Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera). J Agric Food Chem 2007;55:8411-22. doi: 10.1021/jf0717440

34. Okamoto I, Taniguchi Y, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M. Major royal jelly protein 3 exhibits antialergic effects in vitro and in vivo. Life Sci 2003;73:2029-45. doi. 10.1016/S0024-3205(03)00562-9

35. Kamakura M, Suenobu N, Fukushima M. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochem Biophys Res Commun 2001;282:865-74. doi: 10.1006/bbrc.2001.4656

36. Klaudiny J, Albert S, Bachanová K, Kopernický J, Šimúth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol 2005;35:11-22. doi: 10.1016/j.ibmb.2004.09.007

37. Evans DJ. Transcriptional immune responses by honeybee larvae during invasion by the bacterial pathogen Paenibacillus larvae. J Invertebrate Pathol 2004;85:105-11. doi: 10.1016/j. jip.2004.02.004

38. Bieke Sch, de Graaf DC, Goossensb K, Peelman LJ, Jacobs FJ. Differential gene expression in the honeybee head after a bacterial challenge. Dev Comp Immunol 2008;32:883-9. doi: 10.1016/j.dci.2008.01.010

39. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids.Int J Antimicrobial Agents 2005;26:343-56. doi: 10.1016/j. ijantimicag.2005.09.002

40. Henrotin Y, Lambert C, Couchourel D, Ripoll C, Chiotelli E. Nutraceuticals: do they represent a new era in the management of osteoarthritis? - a narrative review from the lessons taken with five products. Osteoarthritis Cartilage 2011;19:1-21. doi: 10.1016/j.joca.2010.10.017

41. Fujiwara H, Kogure A, Sakamoto M, Yamakuni T, Mimaki Y, Murata K, Hitomi N, Yamaguchi K, Ohizumi Y. Honeybee royal jelly and nobiletin stimulate CRE-mediated transcription

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2017: 1.117
5-year IMPACT FACTOR: 1.335



CiteScore 2017: 1.24

SCImago Journal Rank (SJR) 2017: 0.341
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 135 25
PDF Downloads 67 67 12