Cite

1. Demeyer A, Voundi Nkana JC, Verloo MG. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 2001;77:287-95. doi: 10.1016/S0960-8524(00)00043-210.1016/S0960-8524(00)00043-2Search in Google Scholar

2. Väätäinen K, Sirparanta E, Räisänen M, Tahvanainen T. The costs and profitability of using granulated wood ash as a forest fertilizer in drained peatland forests. Biomass Bioenerg 1;35:3335-41.doi:10.1016/j . biombioe.2010.09.006Search in Google Scholar

3. Pitman RM. Wood ash use in forestry - a review of the environmental impacts. Forestry 2006;79:563-88. doi: 10.1093/forestry/cpl041.10.1093/forestry/cpl041Search in Google Scholar

4. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the composition and application of biomass ash.Search in Google Scholar

Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013;105:19-39. doi: 10.1016/j.fuel.2012.10.00110.1016/j.fuel.2012.10.001Search in Google Scholar

5. Siddique R. Utilization of wood ash in concrete manufacturing.Search in Google Scholar

Resour Conserv Recycl 2012;67:27-33. doi: 10.1016/j. resconrec.2012.07.004Search in Google Scholar

6. Johnson A, Catalan LJJ, Kinrade SD. Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 2010;89:3042-50. doi: 10.1016/j.fuel.2010.05.02710.1016/j.fuel.2010.05.027Search in Google Scholar

7. Ramos T, Matos AM, Sousa-Coutinho J. Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Constr Build Mater 2013;49:343-51. doi: 10.1016/j.conbuildmat.2013.08.02610.1016/j.conbuildmat.2013.08.026Search in Google Scholar

8. Sharma M, Khan AA, Puri SK, Tuli DK. Wood ash as a potential heterogeneous catalyst for biodiesel synthesis.Search in Google Scholar

Biomass Bioenergy 2012;41:94-106. doi: 10.1016/j. biombioe.2012.02.017Search in Google Scholar

9. Lu SG, Bai SQ, Zhu L, Shan HD. Removal mechanism of phosphate from aqueous solution by fly ash. J Hazard Mater 2009;161:95-101. doi: 10.1016/j.jhazmat.2008.02.12310.1016/j.jhazmat.2008.02.12318434007Search in Google Scholar

10. Chen J, Kong H, Wu D, Chen X, Zhang D, Sun Z. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J Hazard Mater 2007;B139:293-300. PMID: 1686093110.1016/j.jhazmat.2006.06.03416860931Search in Google Scholar

11. Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P. Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel 2008;87:2469-76. doi: 10.1016/j.fuel.2008.03.01310.1016/j.fuel.2008.03.013Search in Google Scholar

12. Fitzmorris KB, Reimers RS, Oleszkiewicz JA, Little MD. Pathogen inactivation by a closed alkaline systems. In: Proceedings of the Water Environment Federation; WEFTEC 2006, Session 61 through Session 70 [displayed 22 October 2014]. Available at http://www.environmental-expert.com/Files%5C5306%5Carticles%5C13128%5C429.pdfSearch in Google Scholar

13. DD CEN/TS 15290:2006. Solid biofuels. Determination of major elements. The European Committee for Standardization (CEN). ISBN 0-580-48224-3Search in Google Scholar

14. ASTM D 516-02. Standard test method for sulfate ion in water. American Society for Testing and Materials (ASTM). doi: 10.1520/D0516-0210.1520/D0516-02Search in Google Scholar

15. HACH Company. DR 2500 Spectrophotometer, Procedure manual. Loveland (CO): HACH Co; 2006.Search in Google Scholar

16. European Biomass Association. Wood Fuels Handbook, 2008 [displayed 22 October 2014]. Available at http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HANDBOOK_BTC_EN.pdfSearch in Google Scholar

17. Koukouzas N, Hamalainen J, Papanikolaou D, Tourunen A, Jantti T. Mineralogical and elemental composition of fly ash from pilot scale fluidised bed combustion of lignite, bituminous coal,wood chips and their blends. Fuel 2007;86:2186-93. doi: 10.1016/j.fuel.2007.03.03610.1016/j.fuel.2007.03.036Search in Google Scholar

18. Blinova I, Bityukova L, Kasemets K, Ivask A, Käkinen A, Kurvet I, Bondarenko O, Kanarbik L, Sihtmäe M, Aruoja V, Schvede H, Kahru A. Environmental hazard of oil shale combustion fly ash. J Hazard Mater 2012;229-230:192-200. doi: 10.1016/j.jhazmat.2012.05.09510.1016/j.jhazmat.2012.05.09522717068Search in Google Scholar

19. Nester EW, Anderson DG, Evans Roberts Jr. C, Pearsall NN, Nester MT. Microbiology: A Human Perspective. 4th ed. New York: The McGraw-Hill Companies, Inc.; 2004.Search in Google Scholar

20. Sorokin DY, Tourova TP, Schmid M, Wagner M, Koops HP, Kuenen JG, Jetten M. Isolation and properties of obligately chemolitoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 2001;176:170-7. doi: 10.1007/ s00203010031010.1007/s00203010031011511864Search in Google Scholar

21. Sorokin DY. Is there a limit for high-pH life? Int J Syst Evol Microbiol 2005;55:1405-6. PMID: 1601445810.1099/ijs.0.63737-016014458Search in Google Scholar

22. Welch RA. The genus Escherichia. In: Dworkin M, editor. Prokaryotes. Vol. 6: Proteobacteria: Gamma Subclass. New York (NY): Springer Science+Business Media, LLC; 2006. p. 60-71.10.1007/0-387-30746-X_3Search in Google Scholar

23. McHugh CP, Zhang P, Michalek S, Eleazer PD. pH required to kill Enterococcus faecalis in vitro. J Endodont 2004;30:218-9. doi: 10.1097/00004770-200404000-0000810.1097/00004770-200404000-0000815085049Search in Google Scholar

24. Meckes MC, Rhodes ER. Evaluation of bacteriological indicators of disinfection for alkaline treated biosolids. J Environ Eng Sci 2004;3:231-6. doi: 10.1139/s04-00810.1139/s04-008Search in Google Scholar

25. Brewster J, Reimers RS, Abu-Orf M, Bowman D, Lagasse P, Amy B, Oleskiewicz JA, Coombs KM, Fogarty E. Anoxic low-lime and fly ash post-disinfection of anaerobically digested sludge to class A levels. In: Proceedings of the Water Environment Federation, WEFTEC 2002, Session 81 through S e s s i o n 8 9 , p . 1 7 1 - 8 4 . d o i : h t t p : / / d x . d o i . org/10.2175/19386470278416257010.2175/193864702784162570Search in Google Scholar

26. Reijnders L. Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recy 2005;43:313-36. doi: 10.1016/j.resconrec.2004.06.00710.1016/j.resconrec.2004.06.007Search in Google Scholar

27. Wang S, Wu H. Environmental-benign utilization of fly ash as low-cost adsorbents. J Hazard Mater 2006;136:482-501. PMID: 1653095210.1016/j.jhazmat.2006.01.06716530952Search in Google Scholar

28. Samaras P, Papadimitriou CA, Haritou I, Zouboulis AI. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime. J Hazard Mater 2008;154:1052-9. doi: 10.1016/j.jhazmat.2007.11.01210.1016/j.jhazmat.2007.11.01218093729Search in Google Scholar

29. Grisey E, Belle E, Dat J, Mudry J, Aleya L. Survival of pathogenic and indicator organisms in groundwater and landfill leachate through coupling bacterial enumeration with tracer tests. Desalination 2010;261:162-8. doi: 10.1016/j. desal.2010.05.007Search in Google Scholar

30. Umar M, Abdul Aziz H, Suffian Yusoff M. Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 2011;274:278-83. doi: 10.1016/j.desal.2011.02.02310.1016/j.desal.2011.02.023Search in Google Scholar

31. Tofant A, Farkaš A, Hrenović J, Rožić M, Tisma S. Leachates disinfection at Jakuševec waste dump. In: Central European Symposium on Industrial Microbiology and Microbial Ecology; 17-22 Sep 2007; Zadar, Croatia. Book of abstracts.Search in Google Scholar

32. Zhaoa R, Guptab A, Novak JT, Goldsmith CD, Driskill N. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs,). J Hazard Mater 2013;258-259:1-9. doi: 10.1016/j.jhazmat.2013.04.02610.1016/j.jhazmat.2013.04.026Search in Google Scholar

33. Ugurlu A, Salman B. Phosphorus removal by fly ash. Environ Int 1998;24:911-8. doi: 10.1016/S0160-4120(98)00079-810.1016/S0160-4120(98)00079-8Search in Google Scholar

34. Can MY, Yildiz E. Phosphate removal from water by fly ash: Factorial experimental design. J Hazard Mater 2006;B135:165-70. PMID: 1635978710.1016/j.jhazmat.2005.11.036Search in Google Scholar

35. Henze M, Comeau Y. Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing; 2008. p. 33-53.10.2166/9781780401867Search in Google Scholar

36. Jellali S, Wahab MA, Anane M, Riahi K, Bousselmi L. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. J Hazard Mater 2010;184:226-33. doi: 10.1016/j.jhazmat.2010.08.02610.1016/j.jhazmat.2010.08.026Search in Google Scholar

37. Ragheb SM. Phosphate removal from aqueous solution using slag and fly ash. HBRC J 2013;9:270-5. 10.1016/j. hbrcj.2013.08.00510.1016/j.hbrcj.2013.08.005Search in Google Scholar

38. Pal S, Joardar J, Song JM. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use. Environ Sci Technol 2006;40:6091-7. doi: 10.1021/es800936k landfill leachate through coupling bacterial enumeration with tracer tests. Desalination 2010;261:162-8. doi: 10.1016/j. desal.2010.05.007Search in Google Scholar

30. Umar M, Abdul Aziz H, Suffian Yusoff M. Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 2011;274:278-83. doi: 10.1016/j.desal.2011.02.02310.1016/j.desal.2011.02.023Search in Google Scholar

31. Tofant A, Farkaš A, Hrenović J, Rožić M, Tisma S. Leachates disinfection at Jakuševec waste dump. In: Central European Symposium on Industrial Microbiology and Microbial Ecology; 17-22 Sep 2007; Zadar, Croatia. Book of abstracts.Search in Google Scholar

32. Zhaoa R, Guptab A, Novak JT, Goldsmith CD, Driskill N. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs,). J Hazard Mater 2013;258-259:1-9. doi: 10.1016/j.jhazmat.2013.04.02610.1016/j.jhazmat.2013.04.026Search in Google Scholar

33. Ugurlu A, Salman B. Phosphorus removal by fly ash. Environ Int 1998;24:911-8. doi: 10.1016/S0160-4120(98)00079-810.1016/S0160-4120(98)00079-8Search in Google Scholar

34. Can MY, Yildiz E. Phosphate removal from water by fly ash: Factorial experimental design. J Hazard Mater 2006;B135:165-70. PMID: 1635978710.1016/j.jhazmat.2005.11.03616359787Search in Google Scholar

35. Henze M, Comeau Y. Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D, editors. Biological Wastewater Treatment: Principles, Modelling and Design. London: IWA Publishing; 2008. p. 33-53.10.2166/9781780401867Search in Google Scholar

36. Jellali S, Wahab MA, Anane M, Riahi K, Bousselmi L. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions. J Hazard Mater 2010;184:226-33. doi: 10.1016/j.jhazmat.2010.08.02610.1016/j.jhazmat.2010.08.02620817398Search in Google Scholar

37. Ragheb SM. Phosphate removal from aqueous solution using slag and fly ash. HBRC J 2013;9:270-5. 10.1016/j. hbrcj.2013.08.00510.1016/j.hbrcj.2013.08.005Search in Google Scholar

38. Pal S, Joardar J, Song JM. Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use. Environ Sci Technol 2006;40:6091-7. doi: 10.1021/es800936k 10.1021/es800936k18589485Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other