Cite

1. Gornall J, Betts R, Burke E, Clark R, Camp J, Willet K, Wiltshire A. Implications of climate change for agricultural productivity in the early twenty-first century. Phil. Trans R Soc B 2010;365:2973-89. doi: 10.1098/rstb.2010.015810.1098/rstb.2010.0158Search in Google Scholar

2. Alexandrov V, Eitzinger J, Cajic V, Oberforster M. Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biol 2002;8:372-89. doi: 10.1046/j.1354-1013.2002.00484.x10.1046/j.1354-1013.2002.00484.xSearch in Google Scholar

3. Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci 2012;37:118-25. doi: 10.1016/j. tibs.2011.11.007.Search in Google Scholar

4. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988;333:134-9. doi: 10.1038/333134a010.1038/333134a0Search in Google Scholar

5. Woolson EA, Axley JH, Kearney PC. The chemistry and phytotoxicity of arsenic in soils: I. Contaminated field soils.Soil Sci Soc Am J 1971;35:938-43.10.2136/sssaj1971.03615995003500060027xSearch in Google Scholar

6. Meharg AA, Rahman M. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 2003;37:229-34. doi: 10.1021/es025984210.1021/es0259842Search in Google Scholar

7. Camargo JA, Ward JV. Short-term toxicity of sodium nitrate (NaNO3) to non-target freshwater invertebrates. Chemosphere 1992;24:23-8. doi: 10.1016/0045-6535(92)90563-710.1016/0045-6535(92)90563-7Search in Google Scholar

8. Tilman D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices.Proc Natl Acad Sci USA 1999;96:5995-6000. doi: 10.1073/ pnas.96.11.599510.1073/pnas.96.11.5995Search in Google Scholar

9. Kassir LN, Lartiges B, Ouaini N. Effects of fertilizer industry emissions on local soil contamination: a case study of a phosphate plant on the east Mediterranean coast. Environ T e c h n o l 2 0 1 2 ; 3 3 : 8 7 3 - 8 5 . d o i : 10.1080/09593330.2011.601765Search in Google Scholar

10. Nicholson FA, Smith SR, Alloway BJ, Carlton-Smith C, Chambers BJ. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 2003;311:205-19. doi: 10.1016/S0048-9697(03)00139-610.1016/S0048-9697(03)00139-6Search in Google Scholar

11. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 2003;137:65-83. PMID: 1250543310.1016/S0378-4274(02)00381-8Search in Google Scholar

12. Di Toopi LS, Gabrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999;41:105-30.10.1016/S0098-8472(98)00058-6Search in Google Scholar

13. Siedlecka A. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 1995;64:265-72.10.5586/asbp.1995.035Search in Google Scholar

14. Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 2009;12:259-66. doi: 10.1016/j.pbi.2009.05.00610.1016/j.pbi.2009.05.006Search in Google Scholar

15. Saidi Y, Finka A, Goloubinoff P. Heat perception and signalling. Response to cadmium in plants: a tortuous path to thermotolerance. New Phytol 2011;190:556-65.10.1111/j.1469-8137.2010.03571.xSearch in Google Scholar

16. Salt DE, Smith RD, Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 1998;49:643-68. PMID: 1501224910.1146/annurev.arplant.49.1.643Search in Google Scholar

17. Rugh CL, Senecoff JF, Meagher RB, Merkle SA. Development of transgenic yellow poplar for mercury phytoremediation.Nature Biotechnol 1998;16:925-8. doi: 10.1038/nbt1098-92510.1038/nbt1098-925Search in Google Scholar

18. Jung MC, Thorton I. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl Geochem 1996;11:53-9. doi: 10.1016/0883-2927(95)00075-510.1016/0883-2927(95)00075-5Search in Google Scholar

19. Liao XY, Chen TB, Xie H, Liu YR. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 2005;31:791-8. PMID: 1597972010.1016/j.envint.2005.05.03015979720Search in Google Scholar

20. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal - induced oxidative stress and protection by mycorrhization. J Exp Bot 2002;53:1351-65. doi: 10.1093/ jexbot/53.372.135110.1093/jxb/53.372.1351Search in Google Scholar

21. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006;88:1707-19. doi: 10.1016/j.biochi.2006.07.00310.1016/j.biochi.2006.07.00316914250Search in Google Scholar

22. Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS. Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008;24:2894-900.10.1093/bioinformatics/btn55310.1093/bioinformatics/btn553414163818974169Search in Google Scholar

23. Krämer U, Clemens S. Molecular biology of metal homeostasis and detoxification. In: Tamäs M, Martinoia E, editors. Topics in current genetics. New York (NY): Springer Verlag; 2005. p. 216-71.Search in Google Scholar

24. Bona E, Marsano F, Cavaletto M, Berta G. Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 2007;7:1121-30. doi: 10.1002/ pmic.20060071210.1002/pmic.20060071217352425Search in Google Scholar

25. Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J.Quantitative changes in protein expression of cadmiumexposed poplar plants. Proteomics 2008;8:2514-30. doi: 10.1002/pmic.20070111010.1002/pmic.20070111018563750Search in Google Scholar

26. Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 2009;8:400-17. doi: 10.1021/pr800561r10.1021/pr800561r19072159Search in Google Scholar

27. Giordano PM, Mortvedt J, Mays A. Effect of municipal wastes on crop yields and uptake of heavy metals. J Environ Q u a l 1 9 7 5 ; 4 : 3 9 4 - 9 . d o i : 1 0 . 2 1 3 4 / jeq1975.00472425000400030024xSearch in Google Scholar

28. Islam E, Yang X, He Z, Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 2007;8:1-13. doi: 10.1631/ jzus.2007.B000110.1631/jzus.2007.B0001176492417173356Search in Google Scholar

29. Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G. High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 2008;71:1269-75. doi: 10.1016/j.chemosphere.2007.11.06510.1016/j.chemosphere.2007.11.06518289635Search in Google Scholar

30. Hossain Z, Komatsu S. Contribution of proteomic studies towards understanding plant heavy metal stress response.Front Plant Sci 2013;3:310. doi: 10.3389/fpls.2012.0031010.3389/fpls.2012.00310355511823355841Search in Google Scholar

31. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001;212:475-86. PMID: 1152550410.1007/s00425000045811525504Search in Google Scholar

32. Sharma SK, Goloubinoff P, Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 2008;372:341-5. doi: 10.1016/j.bbrc.2008.05.05210.1016/j.bbrc.2008.05.05218501191Search in Google Scholar

33. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000;408:796-815. doi: 10.1038/3504869210.1038/3504869211130711Search in Google Scholar

34. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL.The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008;319:64-9. doi: 10.1126/science.115064610.1126/science.115064618079367Search in Google Scholar

35. International Rice Genome Sequencing Project. The mapbased sequence of the rice genome. Nature 2005;436:793-800. doi: 10.1038/nature0389510.1038/nature03895Search in Google Scholar

36. Phytozome [displayed 16 January 2014]. Available at http:// www.phytozome.comSearch in Google Scholar

37. Cambridge Healhtech Institute. -Omes and -omics glossary & taxonomy [displayed 16 January 2014]. Available at http:// www.genomicglossaries.com/content/omes.aspSearch in Google Scholar

38. Ahsan N, Renaut J, Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 2009;9:2602-21. doi: 10.1002/ pmic.20080093510.1002/pmic.200800935Search in Google Scholar

39. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997;18:533-7. PMID: 915093710.1002/elps.1150180333Search in Google Scholar

40. Mazzucotelli E, Mastrangelo AM, Crosatti C, Guerra D, Stanca AM, Cattivelli L. Abiotic stress response in plants: When post-transcriptional and post-translational regulations control transcription. Plant Sci 2008;174:420-31. doi: 10.1016/j.plantsci.2008.02.00 Search in Google Scholar

41. Hakeem KR, Chandna R, Ahmad P, Iqbal M, Ozturk M.Relevance of proteomic investigations in plant abiotic stress physiology. OMICS 2012;16:621-35. doi: 10.1089/ omi.2012.004110.1089/omi.2012.0041Search in Google Scholar

42. Cobon GS. Verrills N., Papakostopoulos P, Eastwood H, Linnane AW. The proteomics of ageing. Biogerontology 2002;3:133-6. doi: 10.1023/A:101524030428710.1023/A:1015240304287Search in Google Scholar

43. Hirano H, Islam N, Kawasaki H. Techical aspects of functional proteomics in plants. Phytochemistry 2004;65:1487-9. PMID: 1527644610.1016/j.phytochem.2004.05.019Search in Google Scholar

44. Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J P r o t e o m i c s 2 0 0 8 ; 7 1 : 3 9 1 - 4 11 . d o i : 1 0 . 1 0 1 6 / j . jprot.2008.07.005Search in Google Scholar

45. Swinbanks D. Government backs proteome proposal. Nature 1995;378:653. doi: 10.1038/378653a010.1038/378653a0Search in Google Scholar

46. de Hoog CL, Mann M. Proteomics. Annu Rev Genomics Hum Genet 2004;5:267-93. doi: 10.1146/annurev. genom.4.070802.110305Search in Google Scholar

47. Cuypers A, Vangronsveld J, Clijsters H. The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 2001;39:657-64. doi: 10.1016/S0981-9428(01)01276-110.1016/S0981-9428(01)01276-1Search in Google Scholar

48. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 2003;41:391-7. doi: 10.1016/S0981-9428(03)00035-410.1016/S0981-9428(03)00035-4Search in Google Scholar

49. Horvat T, Vidaković-Cifrek Ž, Oreščanin V, Tkalec M, Pevalek- Kozlina B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ 2007;384:229-38. doi: 10.1016/j.scitotenv.2007.06.00710.1016/j.scitotenv.2007.06.00717610935Search in Google Scholar

50. Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA. Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium induced stress. Ann Appl B i o l 2 0 0 8 ; 1 5 3 : 3 2 1 - 3 3 . d o i : 10.1111/j.1744-7348.2008.00299.xSearch in Google Scholar

51. Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina, Ljubešić N.Cadmium induced responses in duckweed Lemna minor L.Acta Physiol Plant 2008;30:881-90. doi: 10.1007/s11738-008-0194-y10.1007/s11738-008-0194-ySearch in Google Scholar

52. Hassan MJ, Zhang G, Wu F, Wie K, Chen Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 2005;168:255-61. doi: 10.1002/ jpln.20042040310.1002/jpln.200420403Search in Google Scholar

53. Cvjetko P, Tolić S, Šikić S, Balen B, Tkalec M, Vidaković- Cifrek Ž, Pavlica M. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.) Arh Hig Rada Toksikol 2010;61:287-96. doi: 10.2478/10004-1254-61-2010-205910.2478/10004-1254-61-2010-205920860969Search in Google Scholar

54. Balen B, Tkalec M, Šikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Ž. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 2011;20:815-26. doi: 10.1007/s10646-011-0633-110.1007/s10646-011-0633-121416111Search in Google Scholar

55. Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry.Chemosphere 2010;78:224-31. doi: 10.1016/j. chemosphere.2009.11.004Search in Google Scholar

56. Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee I-J, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 2008;8:3561-76. doi: 10.1002/pmic.20070118910.1002/pmic.20070118918752204Search in Google Scholar

57. Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 2007;330:735-46. PMID: 1790539310.1016/j.crvi.2007.08.00117905393Search in Google Scholar

58. Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH. Excess copper induced physiological and proteomic changes in germinating rice seeds.Chemosphere 2007;67:1182-93. doi: 10.1016/j. chemosphere.2006.10.075Search in Google Scholar

59. Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, Van Dorsselaer A, Horst WJ. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 2003;133:1935-46. doi: 10.1104/pp.103.02921510.1104/pp.103.02921530074514605229Search in Google Scholar

60. Führs H, Hartwig M, Molina LE, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ. Early manganese-toxicity response in Vigna unguiculata L. - a proteomic and transcriptomic study. Proteomics 2008;8:149-59. doi: 10.1002/ pmic.20070047810.1002/pmic.20070047818095375Search in Google Scholar

61. Hossain Z, Hajika M, Komatsu S. Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 2012;43:2393-416. doi: 10.1007/s00726-012-1319-610.1007/s00726-012-1319-622588482Search in Google Scholar

62. Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 2010;167:161-8. doi: 10.1016/j. jplph.2009.09.006Search in Google Scholar

63. Pandey S, Rai R, Rai LC. Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp.PCC7120 under arsenic stress. J Proteomics 2012;75:921-37. doi: 10.1016/j. jprot.2011.10.011Search in Google Scholar

64. Requejo R, Tena M. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 2006;6(Suppl 1):S156-62. PMID: 1653474610.1002/pmic.20050038116534746Search in Google Scholar

65. Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses.Proteomics 2006;6:2180-98. doi: 10.1002/pmic.20050054310.1002/pmic.20050054316502469Search in Google Scholar

66. Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 2010;167:247-54. doi: 10.1016/j.jplph.2009.09.01510.1016/j.jplph.2009.09.01520005002Search in Google Scholar

67. Zhou S, Sauvé R, Thannhauser TW. Proteome changes induced by aluminium stress in tomato roots. J Exp Bot 2009;60:1849-57. doi: 10.1093/jxb/erp06510.1093/jxb/erp06519336389Search in Google Scholar

68. Ahsan N, NakamuraT, Komatsu S. Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd) accumulating soybean cultivars under Cd stress. Amino Acids 2012;42:317-27. doi: 10.1007/s00726-010-0809-710.1007/s00726-010-0809-721107622Search in Google Scholar

69. Hossain Z, Makino T, Komatsu S. Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. J Proteomics 2012;75:4151-64. doi: 10.1016/j. jprot.2012.05.037 Search in Google Scholar

70. Hradilová J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure.Electrophoresis 2010;31:421-31. doi: 10.1002/ elps.20090047710.1002/elps.20090047720084635Search in Google Scholar

71. Duressa D, Soliman K, Taylor R, Senwo Z. Proteomic analysis of soybean roots under aluminum stress international.Int J Plant Genomics 2011;2011:2825-31. doi: 10.1155/2011/28253110.1155/2011/282531309250921577316Search in Google Scholar

72. Cho K, Torres NL, Subramanyam S, Deepak SA, Sardesai N, Han O, Williams CE, Ishii H, Iwahashi H, Rakwal R.Protein extraction/solubilization protocol for monocot and dicot plant gel-based proteomics. J Plant Biol 2006;49:413-20. doi: 10.1007/BF0303112010.1007/BF03031120Search in Google Scholar

73. Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 2004;39:715-33. doi: 10.1111/j.1365-313X.2004.02182.x10.1111/j.1365-313X.2004.02182.x15315634Search in Google Scholar

74. Jellouli N, Salem AB, Ghorbel A, Jouira HB. Evaluation of protein extraction methods for Vitis vinifera leaf and root. J I n t e g r P l a n t B i o l 2 0 1 0 ; 5 2 : 9 3 3 - 4 0 . d o i : 10.1111/j.1744-7909.2010. 00973.xSearch in Google Scholar

75. Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, Rose JK. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 2006;1:769-74. PMID: 1740630610.1038/nprot.2006.10217406306Search in Google Scholar

76. Nouri MZ, Komatsu S. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gelbased and LC MS/MS-based proteomics approaches.Proteomics 2010;10:1930-45. doi: 10.1002/pmic.20090063210.1002/pmic.20090063220209511Search in Google Scholar

77. Pavoković D, Križnik B, Krsnik-Rasol M. Evaluation of protein extraction methods for proteomic analysis of nonmodel recalcitrant plant tissues. Croat Chem Acta 2012;85:177-83. doi: 10.5562/cca180410.5562/cca1804Search in Google Scholar

78. Komatsu S. Ahsan N. Soybean proteomics and its application to functional analysis. J Proteomics 2009;72:325-36. doi: 10.1016/j.jprot.2008.10.00110.1016/j.jprot.2008.10.00119022415Search in Google Scholar

79. Sarma AD, Oehrle, NW, Emerich DW. Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 2008;379:192-5. doi: 10.1016/j.ab.2008.04.04710.1016/j.ab.2008.04.04718510937Search in Google Scholar

80. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 2009;9:2419-31. doi: 10.1002/pmic.20080047810.1002/pmic.20080047819343712Search in Google Scholar

81. Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M. Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata.Chemosphere 2009;76:1372-9. doi: 10.1016/j. chemosphere.2009.06.022Search in Google Scholar

82. Ritter A, Ubertini M, Romac S, Gaillard F, Delage L, Mann A, Cock JM, Tonon T, Correa JA, Potin P. Copper stress proteomics highlights local adaptation of two strains of the model brown alga Ectocarpus siliculosus. Proteomics 2010;10:2074-88. doi: 10.1002/pmic.20090000410.1002/pmic.20090000420373519Search in Google Scholar

83. Rodríguez-Celma J, Rellán-Alvarez R, Abadía A, Abadía J, López-Millán AF. Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots.J Proteomics 2010;73:1694-706. doi: 10.1016/j. jprot.2010.05.001Search in Google Scholar

84. Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH. Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 2012;187:113-26. doi: 10.1016/j.plantsci.2012.02.00210.1016/j.plantsci.2012.02.00222404839Search in Google Scholar

85. Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 2009;8:4487-99. doi: 10.1021/pr900288310.1021/pr900288319658398Search in Google Scholar

86. Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: Collaborating for optimal cell function. Mass Spectrom Rev 2011;30:I 772-853. doi: 10.1002/mas.2030110.1002/mas.2030121038434Search in Google Scholar

87. Eubel H, Braun HP and A Millar H. Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 2005;1:11. PMID: 1628751010.1186/1746-4811-1-11130886016287510Search in Google Scholar

88. Xi J, Wang X, Li S, Zhou X, Yue L, Fan J, Hao D. Polyethylene glycol fractionation improved detection of low-abundant proteins by two dimensional electrophoresis analysis of plant proteome. Phytochemistry 2006;67:2341-8. doi: 10.1016/j.phytochem.2006.08.00510.1016/j.phytochem.2006.08.00516973185Search in Google Scholar

89. Baracat-Pereira MC, de Oliveira Barbosa M, Magalhães Júnior MJ, Carrijo LC, Games PD, Almeida HO, Sena Netto JF, Rodrigues Pereira M, de Barros EG. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges - A review. Gen Mol Biol 2012;35:283-91. doi: 10.1590/S1415-4757201200020000910.1590/S1415-47572012000200009339288022802713Search in Google Scholar

90. Cho J-H, Hwang H, Cho M-H, Kwon Y-K, Jeon J-S, Bhoo SH, Hahn T-R. The effect of DTT in protein preparations for proteomic analysis: removal of a highly abundant plant enzyme, ribulose bisphosphate carboxylase/oxygenase. J Plant Biol 2008;51:297-301. doi: 10.1007/BF0303613010.1007/BF03036130Search in Google Scholar

91. Krishnan HB, Natarajan SS. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 2009;70:1958-64. doi: 10.1016/j.phytochem.2009.08.02010.1016/j.phytochem.2009.08.02019766275Search in Google Scholar

92. Natarajan SS, Krishnan HB, Lakshman S, Garrett WM. An efficient extraction method to enhance analysis of low abundant proteins from soybean seed. Anal Biochem 2009;394:259-68. doi: 10.1016/j.ab.2009.07.04810.1016/j.ab.2009.07.04819651100Search in Google Scholar

93. Vertommen A, Møller AL, Cordewenerd JHG, Swennen R, Panis B, Finnie C, America AHP, Carpentiera SC. A workflow for peptide-based proteomics in a poorly sequenced plant: A case study on the plasma membrane proteome of banana.J Proteomics 2011;74:1218-29. doi: 10.1016/j. jprot.2011.02.008Search in Google Scholar

94. Azarkan M, Huet J, Baeyens-Volant D, Looze Y, Vandenbussche G. Affinity chromatography: A useful tool in proteomics studies. J Chromatogr B Analyt Technol Biomed Life Sci 2007;849:81-90. PMID: 1711336810.1016/j.jchromb.2006.10.05617113368Search in Google Scholar

95. Fang X, Zhang W. Affinity separation and enrichment methods in proteomic analysis. J Proteomics 2008;71:284-303. doi: 10.1016/j.jprot.2008.06.01110.1016/j.jprot.2008.06.01118619565Search in Google Scholar

96. Fröhlich A, Lindermayr C. Deep insights into the plant proteome by pretreatment with combinatorial hexapeptide ligand libraries. J Proteomics 2011;74:1182-9. doi: 10.1016/j. jprot.2011.02.019Search in Google Scholar

97. Fröhlich A, Gaupels F, Sarioglu H, Holzmeister C, Spannagl M, Durner J, Lindermayr C. Looking deep inside: Detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Plant Physiol 2012;159:902-14. doi: 10.1104/pp.112.19807710.1104/pp.112.198077338771522555880Search in Google Scholar

98. Gallagher SR. One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol 2006;75:10.2.1-10.2A.37. doi: 10.1002/0471142727.mb1002as7510.1002/0471142727.mb1002as7518265373Search in Google Scholar

99. Klose J. From 2-D electrophoresis to proteomics.Electrophoresis 2009;30:S142-9. doi: 10.1002/ elps.20090011810.1002/elps.20090011819517494Search in Google Scholar

100. Peharec Štefanić P, Šikić S, Cvjetko P, Balen B. Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (Nicotiana tabacum L.) seedlings and plants. Arh Hig Rada Toksikol 2012;63:321-35. doi: 10.2478/10004-1254-63-2012-217310.2478/10004-1254-63-2012-217323152382Search in Google Scholar

101. Gallagher SR. One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Cell Biol 2007;37:6.1.1-6.1.38. 10.1002/0471143030.cb0601s3710.1002/0471143030.cb0601s37Search in Google Scholar

102. O’Farrell PH. High resolution two-dimensional electrophoresis. J Biol Chem 1975;250:4007-21. PMID: 23630810.1016/S0021-9258(19)41496-8Search in Google Scholar

103. Friedman D, Hoving S, Westmeier R. Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enymol 2009;463:515-40. doi: 10.1016/S0076-6879(09)63030-510.1016/S0076-6879(09)63030-5Search in Google Scholar

104. Bjellqvist B, Ek K, Righetti GP, Gianazza E, Görg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 1982;6:317-39. PMID: 714266010.1016/0165-022X(82)90013-6Search in Google Scholar

105. Ünlü M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997;18:2071-7. doi: 10.1002/elps.115018113310.1002/elps.1150181133Search in Google Scholar

106. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Posgnan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology.Search in Google Scholar

Proteomics 2001;1:377-96. PMID: 1168088410.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6Search in Google Scholar

107. Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 1991;199:223-31. doi: 10.1016/0003-2697(91)90094-a10.1016/0003-2697(91)90094-ASearch in Google Scholar

108. Schägger H, Cramer W A, von Jagow G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis.Anal Biochem 1994;217:220-30. doi: 10.1006/ abio.1994.111210.1006/abio.1994.1112Search in Google Scholar

109. Reisinger V, Eichacker LA. Analysis of membrane protein complexes by Blue Native PAGE. Proteomics 2006;6(Suppl 2):6-15. PMID: 1703179910.1002/pmic.200600553Search in Google Scholar

110. Nijtmans LG, Henderson NS, Holt IJ. Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 2002;26:327-34. PMID: 1205492310.1016/S1046-2023(02)00038-5Search in Google Scholar

111. Führs H, Behrens C, Gallien S, Heintz D, Van Dorsselaer A, Braun HP, Horst WJ. Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (Oryza sativa) in comparison with barley (Hordeum vulgare). Ann Bot 2010;105:1129-40. doi: 10.1093/aob/ mcq046Search in Google Scholar

112. Fagioni M, D’Amici GM, Timperio AM, Zolla L. Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Proteome Res 2009;8:310-26. doi: 10.1021/pr800507x10.1021/pr800507x19035790Search in Google Scholar

113. GelAnalyzer [displayed 20 January 2014]. Available at http:// www.gelanalyzer.comSearch in Google Scholar

114. GelScape [displayed 20 January 2014]. Available at http:// www.gelscape.ualberta.caSearch in Google Scholar

115. Li F, Shi J, Shen C, Chen G, Hu S, Chen Y. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 2009;71:251-63. doi: 10.1007/s11103-009-9521-y10.1007/s11103-009-9521-y19629718Search in Google Scholar

116. Zhang H, Lian C, Shen Z. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 2009;103:923-30. doi: 10.1093/aob/mcp01210.1093/aob/mcp012270789519201764Search in Google Scholar

117. Duquesnoy I, Goupil P, Nadaud I, Branlard G, Piquet- Pissaloux A, Ledoigt G. Identification of Agrostis tenuis leaf proteins in response to As(V) and As(III) induced stress using a proteomics approach. Plant Sci 2009;176:206-13. doi: 10.1016/j.plantsci.2008.10.00810.1016/j.plantsci.2008.10.008Search in Google Scholar

118. Zhen Y, Qi JL, Wang SS, Su J, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 2007;131:542-54. doi: 10.1111/j.1399-3054.2007.00979.x10.1111/j.1399-3054.2007.00979.x18251846Search in Google Scholar

119. Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X.Identification of aluminium-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 2007;7:737-49. PMID:1729535710.1002/pmic.20060070317295357Search in Google Scholar

120. Wang R, Gao F, Guo BQ, Huang JC, Wang L, Zhou YJ.Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 2013;14:11125-44. doi: 10.3390/ ijms14061112510.3390/ijms140611125370972323712354Search in Google Scholar

121. Alves M, Moes S, Jenö P, Pinheiro C, Passarinho J, Ricardo CP. The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J Proteomics 2011;74:1351-63. doi: 10.1016/j. jprot.2011.03.002Search in Google Scholar

122. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002;1:376-86. doi: 10.1074/mcp.M200025-MCP20010.1074/mcp.M200025-MCP20012118079Search in Google Scholar

123. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004;3:1154-69. PMID:1538560010.1074/mcp.M400129-MCP20015385600Search in Google Scholar

124. Smaczniak C, Li N, Boeren S, America T, van Dongen W, Goerdayal SS, de Vries S, Angenent GC, Kaufmann K.Proteomics-based identification of low-abundance signalling and regulatory protein complexes in native plant tissues.Nature Protocols 2012;7:2144-58. doi: 10.1038/ nprot.2012.12910.1038/nprot.2012.12923196971Search in Google Scholar

125. Schütz W, Hausmann N, Krug K, Hampp R, Macek B. Extending SILAC to proteomics of plant cell lines. Plant Cell 2011;23:1701-5. doi: 10.1105/tpc.110.08201610.1105/tpc.110.082016312394121540437Search in Google Scholar

126. Lucker J, Laszczak M, Smith D, Lund ST. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv Cabernet Sauvignon) berries at ripening initiation. BMC Genomics 2009;10:50. doi: 10.1186/1471-2164-10-5010.1186/1471-2164-10-50263789619171055Search in Google Scholar

127. Arike L, Valgepea K, Peil L, Nahku R, Adamberg K, Vilu R. Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. J Proteomics 2012;75:5437-48. doi: 10.1016/j.jprot.2012.06.02010.1016/j.jprot.2012.06.02022771841Search in Google Scholar

128. Thelen JJ, Peck SC. Quantitative proteomics in plants: choices in abundance. Plant Cell 2007;19:3339-46. doi: 10.1105/tpc.107.05399110.1105/tpc.107.053991217489618055608Search in Google Scholar

129. Patterson J, Ford K, Cassin A, Natera S, Bacic A. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. Plant Physiol 2007;144:1612-31. doi: 10.1104/pp.107.09638810.1104/pp.107.096388191412717478636Search in Google Scholar

130. Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 2009;9:2668-77. doi: 10.1002/ pmic.20080080610.1002/pmic.20080080619391183Search in Google Scholar

131. Finka A, Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013;18:591-605. doi: 10.1007/s12192-013-0413-310.1007/s12192-013-0413-3374526023430704Search in Google Scholar

132. Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 2004;9:244-52. doi: 10.1007/s12192-013-0413-310.1007/s12192-013-0413-3Search in Google Scholar

133. Verbruggen N, Hermans C, Schat H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 2009;12:364-72. doi: 10.1016/j.pbi.2009.05.00110.1016/j.pbi.2009.05.00119501016Search in Google Scholar

134. Remmerie N, De Vijlder, T, Laukens K, Dang TH., Lemiere F, Mertens I. Next generation functional proteomics in nonmodel plants: a survey on techniques and applications for the analysis of protein complexes and post-translational modifications. Phytochemistry 2011;72:1192-218. doi: 10.1016/j.phytochem.2011.01.00310.1016/j.phytochem.2011.01.00321345472Search in Google Scholar

135. Champagne A, Boutry M. Proteomics of nonmodel plant species. Proteomics 2013;13:663-73. doi: 10.1002/ pmic.20120031210.1002/pmic.20120031223125178Search in Google Scholar

136. Vanderschuren H, Lentz E, Zainuddin I, Gruissem W.Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Prot 2013;93:5-19 doi: 10.1016/j.jprot.2013.05.03610.1016/j.jprot.2013.05.03623748024Search in Google Scholar

137. Galperin MY, Koonin E V. From complete genome sequence to ‘complete’ understanding? Trends Biotechnol 2010;28:398-406. doi: 10.1016/j.tibtech.2010.05.00610.1016/j.tibtech.2010.05.006306583120647113Search in Google Scholar

138. Eapen S, D’Souza SF. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 2005;23:97-114. PMID: 1569412210.1016/j.biotechadv.2004.10.00115694122Search in Google Scholar

139. Aken BV. Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 2008;26:225-7. doi: 10.1016/j.tibtech.2008.02.001 10.1016/j.tibtech.2008.02.00118353473Search in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other