Cite

1. Turner PR, Denny WA. The mutagenic properties of DNA minor-groove binding ligands. Mutat Res 1996;355:141-69. PMID: 878158210.1016/0027-5107(96)00027-9Search in Google Scholar

2. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Therap 2009;121:29-40. doi: 10.1016/j. pharmthera.2008.09.005Search in Google Scholar

3. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007;70:461-77. doi: 10.1021/np068054v10.1021/np068054vSearch in Google Scholar

4. Hamilton PL, Arya DP. Natural product DNA major groove binders. Nat Prod Rep 2012;29:134-43. doi: 10.1039/ c1np00054c10.1039/C1NP00054CSearch in Google Scholar

5. Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem 2001;9:2215-35. doi: 10.1016/ S0968-0896(01)00262-010.1016/S0968-0896(01)00262-0Search in Google Scholar

6. Wasselbourg S, Lauber K. Mechanisms of anticancer drug action. In: Los M, Gibson SB, editors. Apoptotic pathways as targets for novel therapies in cancer and other diseases. New York (NY): Springer Science Business Media, Inc.; 2005. p. 31-55.10.1007/0-387-23695-3_2Search in Google Scholar

7. Hoti N, Ma J, Tabassum S, Wang Y, Wu M. Triphenyl tin benzimidazolethiol, a novel antitumor agent, induces mitochondrial-mediated apoptosis in human cervical cancer cells via suppression of HPV-18 Encoded E6. J Biochem 2003;134:521-8. PMID: 1460797810.1093/jb/mvg169Search in Google Scholar

8. Liu J, Campen A, Huang S, Peng S,Ye X, Palakal M, Dunker KA, Xia Y, Li S. Identifi cation of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profi ling data. BMC Med Genomics 2008;1:39-51. doi: 10.1186/1755-8794-1-3910.1186/1755-8794-1-39Search in Google Scholar

9. Haq I. Thermodynamics of drug-DNA interactions. Arch Biochem Biophys 2002;15:1-15. PMID: 1206179610.1016/S0003-9861(02)00202-3Search in Google Scholar

10. Gurova K. New hopes for old drugs: revising DNA-binding small molecules as anticancer agents. Future Oncol 2009;5:1685-704. doi: 10.2217/fon.09.12710.2217/fon.09.127282182320001804Search in Google Scholar

11. Leal JFM, Martinez-Diez M, Garcia-Hernandez V, Moneo V, Domingo A, Bueren-Calabuig JA, Negri A, Gago F, Guillen-Navarro MJ, Aviles P, Cuevas C, Garcia-Fernandez LF, Galmarini CM. PMO1183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br J Pharmacol 2010;161:1099-110. doi: 10.1111/ j.1476-5381.2010.00945.x10.1111/j.1476-5381.2010.00945.x299869020977459Search in Google Scholar

12. Tidwell RR, Boykin DW. Dicationic DNA minor groove binders as antimicrobial agents. In: Demeunynck M, Bailly C, Wilson WD, editors. DNA and RNA binders: from small molecules to drugs. Vol. 2. Weinheim: Wiley-VCH; 2003. p. 414-60.10.1002/3527601783.ch16Search in Google Scholar

13. Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid “shape readout” by an aminosugar. Biochemistry 2011;50:9088-113. doi: 10.1021/ bi201077h10.1021/bi201077hSearch in Google Scholar

14. Kumar S, Xue L, Arya DP. Neomycin-neomycin dimer: an all-carbohydrate scaffold with high affi nity for AT-rich DNA duplexes. J Am Chem Soc 2011;133:7361-75. doi: 10.1021/ ja108118v10.1021/ja108118vSearch in Google Scholar

15. Zhang X, Zhang SC, Sun D, Hu J, Wali A, Pass H, Fernandez- Madrid F, Harbut MR, Tang N. New insight into the molecular mechanism of the biological effect of DNA minor groove binders. PLoS One. 2011;6:e25822. doi: 10.1371/ journal.pone.002582210.1371/journal.pone.0025822Search in Google Scholar

16. Avendano C, Menendez CJ. DNA Intercalators and topoisomerase inhibitors. In: Avendano C, Menendez JC, editors. Medicinal chemistry of anticancer drugs. Oxford: Elesevier BV; 2008. p. 199-228.10.1016/B978-0-444-52824-7.00007-XSearch in Google Scholar

17. Milano A, Perri F, Ciarmiello A, Caponigro F. Targetedtherapy and imaging response: a new paradigm for clinical evaluation? Rev Recent Clin Trials 2011;6:259-65. PMID: 2168267510.2174/157488711796575540Search in Google Scholar

18. Marverti G, Cusumano M, Ligabue A, Di Pietro ML, Vainiglia PA, Ferrari A, Bergomi M, Moruzzi MS, Frassineti C. Studies on the anti-proliferative effects of novel DNAintercalating bipyridyl-thiourea-Pt(II) complexes against cisplatin-sensitive and -resistant human ovarian cancer cells. J Inorg Biochem 2008;102:699-712. PMID: 1808226810.1016/j.jinorgbio.2007.10.015Search in Google Scholar

19. Martinez R, Chacon-Garcia L. The Search of DNAintercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 2005;12:127-51. PMID: 1563873210.2174/0929867053363414Search in Google Scholar

20. Raj AS, Heddle JA. Simultaneous detection of chromosomal aberrations and sister-chromatid exchanges: experience with DNA intercalating agents. Mutat Res 1980;78:253-60. PMID: 743236010.1016/0165-1218(80)90106-8Search in Google Scholar

21. Wilson WR, Harris NM, Ferguson LR. Comparison of the mutagenic and clastogenic activity of amsacrine and other DNA-intercalating drugs in cultured V79 Chinese hamster cells. Cancer Res 1984;44:4420-31. PMID: 6547875Search in Google Scholar

22. Palchaudhuri R, Hergenrother PJ. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 2007;18:497-503. doi: 10.1016/j.copbio.2007.09.00610.1016/j.copbio.2007.09.00617988854Search in Google Scholar

23. Terakawa T, Miyake H, Muramaki M, Takenaka A, Fujisawa M. Salvage chemotherapy with methotrexate, etoposide and actinomycin D in men with metastatic nonseminomatous germ cell tumors with a choriocarcinoma component: a preliminary report. Int J Urol 2010;17:881-5. doi: 10.1111/ j.1442-2042.2010.02618.x10.1111/j.1442-2042.2010.02618.xSearch in Google Scholar

24. Milano A, Apice G, Ferrari E, Fazioli F, de Rosa V, de Luna AS, Laffaioli RV, Caponigro F. New emerging drugs in soft tissue sarcoma. Crit Rev Oncol Hematol 2006;59:74-84. PMID: 1653360410.1016/j.critrevonc.2005.12.002Search in Google Scholar

25. Schaich M, Illmer T, Aulitzky W, Bodenstein H, Clemens M, Neubauer A, Repp R, Schakel U, Soucek S, Wandt H, Ehninger G. Intensifi ed double induction therapy with high dose mitoxantrone, etoposide, m-amsacrine and high dose ara-C for elderly acute myeloid leukemia patients aged 61-65 years. Haematologica 2002;87:808-15. PMID: 12161356Search in Google Scholar

26. Fiocchi SC, Selting KA, Rosenberg MP, Kolli P, Lenaz G, Henry C. An open-label, dose-escalating phase I study of elsamitrucin (SPI 28090) in treatment of malignant solid tumors in dogs. J Vet Intern Med 2011;25:897-902. doi: 10.1111/j.1939-1676.2011.0752.x10.1111/j.1939-1676.2011.0752.xSearch in Google Scholar

27. He Y, Zhang L, Song C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modifi ed with PEGylated liposomes. Int J Nanomedicine 2010;5:697-705. PMID: 2095722110.2147/IJN.S12129Search in Google Scholar

28. Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: Conventional therapies and molecularly targeted approaches. Cancer Treat Rev 2006;32:9-27. PMID: 1633807510.1016/j.ctrv.2005.10.003Search in Google Scholar

29. Salas JA, Mendez C. Indolocarbazole antitumour compounds by combinatorial biosynthesis. Curr Opin Chem Biol 2009;13:152-60. doi: 10.1016/j.cbpa.2009.02.00310.1016/j.cbpa.2009.02.003Search in Google Scholar

30. Facompre M, Baldeyrou B, Bailly C, Anizon F, Marminon C, Prudhomme M, Colson P, Houssier C. DNA targeting of two new antitumour rebeccamycin derivatives. Eur J Med Chem 2002;37:925-32. PMID: 1266001710.1016/S0223-5234(02)01423-XSearch in Google Scholar

31. Bailly C, Qu X, Anizon F, Prudhomme M, Ois Riou J, Chaires JB. Enhanced binding to DNA and topoisomerase I inhibition by an analog of the antitumor antibiotic rebeccamycin containing an amino sugar residue. Mol Pharmacol 1999;55:377-85. PMID: 992763110.1124/mol.55.2.3779927631Search in Google Scholar

32. Sanchez C, Salas AP, Brana AF, Palomino M, Pineda-Lucena A, Carbajo RJ, Mendez C, Moris F, Salas JA. Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated Indolocarbazoles. Chem Commun 2009;27:4118-20. doi: 10.1039/b905068j10.1039/b905068j19568652Search in Google Scholar

33. Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA. Combinatorial biosynthesis of antitumor indolocarbazole compounds. PNAS 2005;102:461-6. doi: 10.1073/pnas.040780910210.1073/pnas.040780910254430715625109Search in Google Scholar

34. Gamage SA, Spicer JA, Finlay GJ, Stewart AJ, Charlton P, Baguley BC, Denny WA. Dicationic bis(9-methylphenazine-1-carboxamides): relationships between biological activity and linker chain structure for a series of potent topoisomerase targeted anticancer drugs. J Med Chem 2001;44:1407-15. PMID: 1131106310.1021/jm000328311311063Search in Google Scholar

35. Sappal DS, McClendon KA, Fleming JA, Thoroddsen V, Connolly K, Reimer C, Blackman RK, Bulawa CE, Osheroff N, Charlton P, Rudolph-Owen LA. Biological characterization of MLN944: A potent DNA binding agent. Mol Cancer Ther 2003;3:47-58. PMID: 1474947510.1158/1535-7163.47.3.1Search in Google Scholar

36. Fujimoto S. Promising antitumor activity of a novel quinoline derivative, TAS-103, against fresh clinical specimens of eight types of tumors measured by fl ow cytometric DNA analysis. Biol Pharm Bull 2007;30:1923-9. PMID: 1791726310.1248/bpb.30.192317917263Search in Google Scholar

37. Bailly C. Topoisomerase I poisons and suppressors as anticancer drugs. Curr Med Chem 2000;7:39-58. PMID: 1063735610.2174/092986700337548910637356Search in Google Scholar

38. Baguley BC, Kerr DJ. Anticancer Drug Development. San Diego (CA): Academic Press; 2001.Search in Google Scholar

39. Varvaresou A, Iakovou K. Molecular modeling study of intercalation complexes of tricyclic carboxamides with d(CCGGCGCCGG)2 and d(CGCGAATTCGCG)2. J Mol Model 2010;17:2041-50. doi: 10.1007/s00894-010-0891-510.1007/s00894-010-0891-521153908Search in Google Scholar

40. Williamson NR, Chawrai S, Leeper FJ, Salmond GPC. Prodiginines and their potential utility as proapoptotic anticancer agents. In: Fialho A, Chakrabarty A, editors. Emerging cancer therapy: microbial approaches and biotechnological tools. Hoboken (NJ): John Wiley & Sons; 2010. p. 333-66.10.1002/9780470626528.ch15Search in Google Scholar

41. Manderville RA. Synthesis, proton-affi nity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anticancer Agents 2001;1:195-218. PMID: 1267876710.2174/156801101335468812678767Search in Google Scholar

42. Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Microbial-based therapy of cancer. Bioeng Bugs 2010;1:178-90. doi: 10.4161/bbug.1.3.1090310.4161/bbug.1.3.10903302642321326924Search in Google Scholar

43. Chawrai SR, Williamson NR, Salmond GPC, Leeper FJ. Chemoenzymatic synthesis of prodigiosin analoguesexploring the substrate specifi city of PigC. Chem Commun 2008;16:1862-4. doi: 10.1039/B719353J10.1039/b719353j18401499Search in Google Scholar

44. Cancerquest. Doxorubicin [displayed 9 June 2013]. Available at http://www.cancerquest.org/drugs/doxorubicinSearch in Google Scholar

45. Jakubowiak AJ, Kendall T, Al-Zoubi A, Khaled Y, Mineishi S, Ahmed A, Campagnaro E, Brozo C, Braun T, Talpaz M, Kaminski MS. Phase II trial of combination therapy with bortezomib, pegylated liposomal doxorubicin, and dexamethasone in patients with newly diagnosed myeloma. J Clin Oncol 2009;27:5015-22. doi: 10.1200/ JCO.2008.19.537010.1200/JCO.2008.19.537019738129Search in Google Scholar

46. Plosker GL, Faulds D. Epirubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 1993;45:788-856. PMID: 768646910.2165/00003495-199345050-000117686469Search in Google Scholar

47. The Scott Hamilton CARES Initiative. Mitoxantrone [displayed 9 June 2013]. Available at http://www.chemocare.com/bio/mitoxantrone.aspSearch in Google Scholar

48. Yamori T, Matsunaga A, Sato S, Yamazaki K, Komi A, Ishizu K, Mita I, Edatsugi H, Matsuba Y, Takezawa K, Nakanishi O, Hiroshi Kohno H, Nakajima Y, Komatsu H, Andoh T, Tsuruo T. Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an invitro and in vivo human cancer cell line panel. Cancer Res 1999;59:4042-9. PMID: 10463605Search in Google Scholar

49. David-Cordonnier MH, Hildebrand MP, Baldeyrou B, Lansiaux A, Keuser C, Benzschawel K, Lemster T, Pindur U. Design, synthesis and biological evaluation of new oligopyrrole carboxamides linked with tricyclic DNAintercalators as potential DNA ligands or topoisomerase inhibitors. Eur J Med Chem 2007;42:752-71. PMID: 1743385110.1016/j.ejmech.2006.12.03917433851Search in Google Scholar

50. Bhuyan BK, Newell KA, Crampton SL, Von Hoff DD. CC-1065 (NSC 298223), a most potent antitumor agent: kinetics of inhibition of growth, DMA synthesis, and cell survival. Cancer Res 1982;42:3532-7. PMID: 7105029Search in Google Scholar

51. Wanga X, Chub N, Wanga N, Chao Liua Q, Jianga C, Wanga X, Ikejima T, Chenga M. Newly synthesized bis-benzimidazole derivatives exerting anti-tumor activity through induction of apoptosis and autophagy. Bioorg Med Chem Lett 2012;22:6297-300. doi: 10.1016/j.bmcl.2012.06.10210.1016/j.bmcl.2012.06.10222959518Search in Google Scholar

52. Hirota M, Fujiwara T, Mineshita S, Sugiyama H, Teraoka H. Distamycin A enhances the cytotoxicity of duocarmycin A and suppresses duocarmycin A-induced apoptosis in human lung carcinoma cells. Int J Biochem Cell Biol 2007;39:988-96. doi: 10.1016/j.biocel.2007.01.01910.1016/j.biocel.2007.01.01917321782Search in Google Scholar

53. Bielawski K, Wolczynski S, Bielawska A. DNA-binding properties and cytotoxicity of extended aromatic bisamidines in breast cancer MCF-7 cells. Pol J Pharmacol 2001;53:143-7. PMID: 1178795410.1248/bpb.24.70411411564Search in Google Scholar

54. Yang YH, Cheng MS, Wang QH, Nie H, Liao N, Wang J, Chen H. Design, synthesis, and anti-tumor evaluation of novel symmetrical bis-benzimidazoles. Eur J Med Chem 2009;44:1808-12. doi: 10.1016/j.ejmech.2008.07.02110.1016/j.ejmech.2008.07.02118762358Search in Google Scholar

55. Chen AY, Yu C, Bodley A, Peng LF, Liu LF. A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Res 1993;53:1332-7. PMID: 8383008Search in Google Scholar

56. Pilch DS, Xu Z, Sun Q, Lavoie EJ, Liu LF, Breslauer KJ. A terbenzimidazole that preferentially binds and conformationally alters structurally distinct DNA duplex domains: A potential mechanism for topoisomerase I poisoning. Proc Natl Acad Sci USA 1997;94:13565-70.10.1073/pnas.94.25.13565283469391066Search in Google Scholar

57. Bailly C, Chessaro G, Carrasco C, Joubert A, Mann J, Wilson WD, Neidle S. Sequence-specifi c minor groove binding by bis-benzimidazoles: water molecules in ligand recognition. Nucleic Acids Res 2003;31:1514-24. PMID: 1259556010.1093/nar/gkg23714983012595560Search in Google Scholar

58. Vekshin N. Binding of Hoechst with nucleic acids using fl uorescence spectroscopy. J Biophys Chem 2011;2:443-7. doi: 10.4236/jbpc.2011.2405210.4236/jbpc.2011.24052Search in Google Scholar

59. Invitrogen. Hoechst Stains [displayed 9 June 2013]. Available at http://probes.invitrogen.com/media/pis/mp21486.pdfSearch in Google Scholar

60. Leitner F, Paillasson S, Ronot X, Demongeot J. Dynamic functional and structural analysis of living cells: new tools for vital staining of nuclear DNA and for characterisation of cell motion. Acta Biotheor 1995;43:299-317. PMID: 891934610.1007/BF007135558919346Search in Google Scholar

61. Chen AY, Yu C, Gatto B, Liu LF. DNA minor groove-binding ligands: A different class of mammalian DNA topoisomerase I inhibitors. Proc Natl Acad Sci USA 1993;90:8131-5. doi: 10.1073/pnas.90.17.813110.1073/pnas.90.17.8131473027690143Search in Google Scholar

62. Baraldi PG, Cacciari B, Guiotto A, Romagnoli R, Zaid AN, Spalluto G. DNA minor-groove binders: results and design of new antitumor agents. Il Farmaco 1999;54:15-25. doi: 10.1016/S0014-827X(98)00102-510.1016/S0014-827X(98)00102-5Search in Google Scholar

63. Kamal A, Reddy PS, Reddy DR, Laxman E. DNA binding potential and cytotoxicity of newly designed pyrrolobenzodiazepine dimers linked through a piperazine side-armed-alkane spacer. Bioorg Med Chem 2006;14:385-94. PMID: 1618588410.1016/j.bmc.2005.08.020Search in Google Scholar

64. ClinicalTrails.gov. SJG-136 in Treating Patients With Relapsed or Refractory Acute Leukemia, Myelodysplastic Syndromes, Blastic Phase Chronic Myelogenous Leukemia, or Chronic Lymphocytic Leukemia [displayed 9 June 2013]. Available at http://clinicaltrials.gov/ct2/show/NCT00301769Search in Google Scholar

65. Baron RM, Lopez-Guzman S, Riascos DF, Macias AA, Layne MD, Cheng G, Harris C, Chung SW, Reeves R, von Andrian UH, Perrella MA. Distamycin A inhibits HMGA1-binding to the P-selectin promoter and attenuates lung and liver inflammation during murine endotoxemia. PLoS One 2010;5:e10656. doi: 10.1371/journal.pone.001065610.1371/journal.pone.0010656Search in Google Scholar

66. Nelson SM, Ferguson LR, Denny WA. Non-covalent ligand/ DNA interactions: Minor groove binding agents. Mutat Res 2007;623:24-40. PMID: 1750704410.1016/j.mrfmmm.2007.03.012Search in Google Scholar

67. Cortesi R, Romagnoli R, Drechsler M, Menegatti E, Zaid AN, Ravani L, Esposito E. Liposomes- and ethosomesassociated distamycins: as comparative study. J Liposome Res 2009;20:277-85. doi: 10.3109/0898210090344305710.3109/08982100903443057Search in Google Scholar

68. Cozzi P. A new class of cytotoxic DNA minor groove binders: alpha-halogenoacrylic derivatives of pyrrolecarbamoyl oligomers. Il Farmaco 2001;56:57-65. doi: 10.1016/S0014-827X(01)01009-610.1016/S0014-827X(01)01009-6Search in Google Scholar

69. Vialleta TBJ, Stewart D, Shepherdd F, Ayoubb J, Cormief Y, DiPietrof N, Stewardg W. Tallimustine is inactive in patients with previously treated small cell lung cancer. A phase II trial of the National Cancer Institute of Canada Clinical Trials Group. Lung Cancer 1996;15:367-73. PMID: 895968110.1016/0169-5002(95)00600-1Search in Google Scholar

70. Punt CJA, Humblet Y, Roca E, Dirix LJ, Wainstein R, Polli A, Corradino I. Tallimustine in advanced previously untreated colorectal cancer, a phase II study. Br J Cancer 1996;73:803-4. PMID: 861138410.1038/bjc.1996.140Search in Google Scholar

71. Neidle S, Kelland LR, Trent JO, Simpson IJ, Boykin DW, Kumar A, Wilson WD. Cytotoxicity of bis(Phenylamidiniu m)furan alkyl derivatives in human tumour cell lines: realation to DNA minor groove binding. Bioorg Med Chem Lett 1997;7:1403-8. doi: 10.1016/S0960-894X(97)00229-110.1016/S0960-894X(97)00229-1Search in Google Scholar

72. Smith JA, Bifulco G, Case DA, Boger DL, Gomez-Paloma L, Chazin WJ. The Structural basis for in situ activation of DNA alkylation by duocarmycin. J Mol Biol 2000;300:1195-204. PMID: 1090386410.1006/jmbi.2000.388710903864Search in Google Scholar

73. Tietze LF, Schuster HJ, Schmuck K, Schuberth I, Alves F. Duocarmycin-based prodrugs for cancer prodrug monotherapy. Bioorg Med Chem 2008;16:6312-8. doi: 10.1016/j.bmc.2008.05.009 Mišković K, et al. ANTINEOPLASTIC DNA BINDING COMPOUNDS Arh Hig Rada Toksikol 2013;64:593-602 Search in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other