Antifungal and Antipatulin Activity of Gluconobacter Oxydans Isolated from Apple Surface

Open access

Fungicides are the most common agents used in postharvest treatment of fruit and are the most effective against blue mould, primarily caused by Penicillium expansum. Alternatively, blue mould can be treated with antagonistic microorganisms naturally occurring on fruit, such as the bacterium Gluconobacter oxydans. The aim of this study was to establish the antifungal potential of the G. oxydans 1J strain isolated from apple surface against Penicillium expansum in culture and apple juice and to compare it with the efficiency of a reference strain G. oxydans ATCC 621H. The highest antifungal activity of G. oxydans 1J was observed between days 3 and 9 with no colony growth, while on day 12, P. expansum colony diameter was reduced to 42.3 % of the control diameter. Although G. oxydans 1J did not fully inhibit mould growth, it showed a high level of efficiency and completely prevented patulin accumulation in apple juice.

1. Puel O, Galtier P, Oswald IP. Biosynthesis and toxicological effects of patulin. Toxins 2010;2:613-31. doi: 10.3390/ toxins2040613

2. International Agency for Research on Cancer (IARC). Overall Evaluation of Carcinogenicity. An updating of IARC monographs volumes 1 to 42. IARC monographs on the evaluation of carcinogenic risks to humans Supplement 7. Lyon: IARC; 1987.

3. Codex Committee on Food Additives and Contaminants (CODEX). Maximum level for patulin in apple juice and apple juice ingredients and other beverages. Codex Stan 235-2003.

4. EUROPEAN UNION. Commission Regulation no. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Commun 2006;L364:5-24.

5. Baert K, Devlieghere F, Flyps H, Oosterlinck M, Ahmed MM, Rajković A, Verlinden B, Nicolai B, Debevere J, De Meulenaer B. Influence of storage conditions of apples on growth and patulin production by Penicillium expansum. Int J Food Microbiol 2007;119:170-81.

6. Ricelli A, Baruzzi F, Solfrizzo M, Morea M, Fanizzi FP. Biotransformation of Patulin by Gluconobacter oxydans. Appl Environ Microbiol 2007;73:785-92. doi: 10.1128/ AEM.02032-06

7. Bandoh S, Takeuchi M, Ohsawa K, Ohsawac K, Higashiharaa K, Kawamotoa Y, Gotoa T. Patulin distribution in decayed apple its reduction. Int Biodeter Biodegrad 2009;63:379-82. doi: 10.1016/j.ibiod.2008.10.010

8. Conway WS, Janisiewicz WJ, Leverentz B, Saftner RA, Camp MJ. Control of blue mold of apple by combining controlled atmosphere, an antagonist mixture, and sodium bicarbonate. Postharvest Biol Technol 2007;45:326-32. doi:10.1016/j.postharvbio.2007.03.005

9. Janisiewicz WJ, Korsten L. Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 2002;40:411-41. doi: 10.1146/annurev.phyto.40.120401.130158

10. Reddy KRN, Farhana NI, Salleh B, Oliviera CAF. Microbiological control of mycotoxins: present status and future concerns. In: Mendez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz: FORMATEX; 2010. p. 1078-86.

11. Tanasupawat S, Thawai C, Yukphan P, Moonmangmee D, Itoh T, Adachi O, Yamada Y. Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the a-Proteobacteria. J Gen Appl Microbiol 2004;50:159-67.

12. Deppenmeier U, Hoffmeister M, Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 2002;60:233-42. doi: 10.1007/s00253-002-1114-5

13. Samson RA, Hoekstra ES, Frisvad JC. Introduction to Food and Airborne Fungi. 7th ed. Utrecht: Centraalbureau voor Schimmelcultures; 2004.

14. Scott PM. Mycotoxin analysis by TLC. In: Touchstone JC, editor. Advances in thin layer chromatography. New York (NY): John Willy and sons Inc.; 1982. p. 321-42.

15. Kourkoutas Y, Kanellaki M, Koutinas AA. Apple pieces as immobilization support of various microorganisms. LWTFood Sci Technol 2006;39:980-6. doi: 10.1016/j. lwt.2006.02.024

16. Scherm B, Ortu G, Muzzu A, Budroni M, Arras G, Migheli Q. Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. J Plant Pathol 2003;85:205-13. doi: 10.4454/jpp.v85i3.1032

17. Janisiewicz WJ, Tworkoski TJ, Kurtzman CP. Biocontrol potential of Metschnikowia pulcherrima strains against blue mould of apple. Phytopathology 2001;91:1098-108. doi: 10.1094/PHYTO.2001.91.11.1098

18. Zhang D, Spadaro D, Garibaldi A, et al. Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol Technol 2010;55:174-81. doi: 10.1016/j.postharvbio.2009.09.007,

19. Kurzman CP, Droby S. Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst Appl Microbiol 2001;24:395-9.

20. Spadaro D, Ciavorella A, Dianpeng Z, Garibaldi A, Gullino ML. Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowiapulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol 2010;56:128-37. doi: 10.1139/w09-117

21. Reddy KRN, Spadaro D, Gullino ML, Garibaldi A. Potential of two Metschnikowia pulcherrima (yeast) strains for in vitro biodegradation of patulin. J Food Prot 2011;74:154-6. doi: 10.4315/0362-028X.JFP-10-331

22. Leverentz B, Conway WS, Janisiewicz W, Abadias M, Kurtzman CP, Camp MJ. Biocontrol of the food-borne pathogens Listeria monocytogenes and Salmonellaenterica serovar poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Appl Environ Microbiol 2006;72:1135-40. doi: 10.1128/AEM.72.2.1135-1140.2006

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1,606



CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 190 20
PDF Downloads 112 100 13