Cite

1. Vecchia P, Matthes R, Ziegelberger G, Lin J, Saunders R, Swerdlow A, editors. Exposure to High Frequency Electromagnetic Fields, Biological Effects and Health Consequences (100 kHz-300 GHz). Oberschleisheim: ICNIRP; 2009.Search in Google Scholar

2. Repacholi MH. An overview of WHO’s EMF project and the health effects of EMF exposure. In: Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR 2003). Electromagnetic Fields and Our Health; 20-22 Oct 2003; Kuala-Lumpur, Malaysia [displayed 11 July 2012]. Available at http://www.who.int/peh-emf/meetings/archive/en/keynote4repacholi.pdfSearch in Google Scholar

3. Federal Communications Commission Offi ce of Engineering & Technology. Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fi elds. OET BULLETIN 56 Fourth Edition, 1999 [displayed 11 July 2012]. Available at http://transition.fcc.gov/Bureaus/ Engineering_Technology/Documents/bulletins/oet56/ oet56e4.pdfSearch in Google Scholar

4. Hyland GJ. Physics and biology of mobile telephony. Lancet 2000;356:1833-6.10.1016/S0140-6736(00)03243-8Search in Google Scholar

5. Challis LJ. Mechanisms for interaction between RF fi elds and biological tissue. Bioelectromagnetics 2005;Supplement 7:S98-106.10.1002/bem.20119Search in Google Scholar

6. Valberg PA. Modulated RF energy: mechanistic viewpoint on the health implications. In: Repacholi M, van Deventer E, Ravazzani P, editors. Proceedings International Workshop on Base Stations and Wireless Networks: Exposures and Health Consequences; 15-16 June 2005; Geneva, Switzerland. Geneva: WHO; 2005. p. 33-46.Search in Google Scholar

7. International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fi elds (up to 300 GHz). Health Phys 1998;97:257-8.10.1097/HP.0b013e3181aff9dbSearch in Google Scholar

8. World Health Organization (WHO). Electromagnetic Fields (300 Hz to 300 GHz). Environmental Health Criteria 137. Geneva: WHO; 1993.Search in Google Scholar

9. Belyaev IY, Shcheglov VS, Alipov ED, Ushakov VD. Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro - dependence on physical, physiological, and genetic factors. IEEE Trans Microw Theory Tech 2000;48:2172-9.10.1109/22.884211Search in Google Scholar

10. Belyaev I. Non-thermal biological effects of microwaves. Microwave Rev 2005;11:13-29.Search in Google Scholar

11. Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Prog Biophys Mol Biol 2011;105:223-46.10.1016/j.pbiomolbio.2010.07.003Search in Google Scholar

12. Independent Expert Group on Mobile Phones (IEGMP). Mobile Phones and Health, 2000 [displayed 11 July 2012]. Available at http://www.iegmp.org.uk/report/text.htm.Search in Google Scholar

13. Hyland GJ. Physical basis of adverse and therapeutic effects of low intensity microwave radiation. Indian J Exp Biol 2008; 46, 403-19.Search in Google Scholar

14. Pavičić I. Djelovanje radiofrekvencijskog zračenja na strukture citoskeleta stanica u kulturi [Influence of radiofrequency radiation on cytoskeleton structure of cells in culture, in Croatian]. [PhD thesis]. Zagreb: Faculty of Science, University of Zagreb; 2008.Search in Google Scholar

15. Pokorny J, Jelinek F, Trkal V, Lamprecht I, Holzel R. Vibrations in microtubules. Astrophys Space Sci 1997;23:171-9.Search in Google Scholar

16. Pokorny J, Jelinek F, Trkal V. Electric field around microtubules. Bioelectrochem Bioenerg 1998;45:239-45.10.1016/S0302-4598(98)00100-7Search in Google Scholar

17. Adair RK. Vibrational resonances in biological systems at microwave frequencies. Biophys J 2002;82:1147-52.10.1016/S0006-3495(02)75473-8Search in Google Scholar

18. Pokorny J. Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 2004;63:321-6.10.1016/j.bioelechem.2003.09.02815110296Search in Google Scholar

19. Pavičić I, Trošić I. Interaction of GSM modulated RF radiation and macromolecular cytoskeleton structures. In: Kalkan T, Ozkan M, editors. 6th International Workshop on Biological Effects of Electromagnetic Fields; 10-14 Oct 2010; Bodrum, Turkey [displayed 11 July 2012]. Available at http://www.istanbul.edu.tr/6internatwshopbioeffemf/cd/pdf/poster/INTERACTION%20OF%20GSM%20MODULATED%20RF%20RADIATION%20AND.pdfSearch in Google Scholar

20. Pavičić I, Trošić I. In vitro testing of cellular response to ultra high frequency electromagnetic fi eld radiation. Toxicol In Vitro 2008;22:1344-8.10.1016/j.tiv.2008.04.01418513921Search in Google Scholar

21. Ballardin M, Tusa I, Fontana N, Monorchio A, Pelletti C. Rogovich A, Barale R, Scarpato R. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutat Res 2011;716:1-9.10.1016/j.mrfmmm.2011.07.00921827772Search in Google Scholar

22. Trošić I, Pavičić I. Disturbance of cell proliferation in response to mobile phone frequency radiation. Arh Hig Rada Toksikol 2009;60:109-15.10.2478/10004-1254-60-2009-1891Search in Google Scholar

23. Bohr H, Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 2000;61:4310-4.10.1103/PhysRevE.61.4310Search in Google Scholar

24. Bohr H, Bohr J. Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics 2000;21:68-72.10.1002/(SICI)1521-186X(200001)21:1<68::AID-BEM10>3.0.CO;2-9Search in Google Scholar

25. De Pomerai DI, Smith B, Dawe A, North K, Smith T, Archer DB, Duce IR, Jones D, Candido EP. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett 2003;543:93-7.10.1016/S0014-5793(03)00413-7Search in Google Scholar

26. Kirschvink JL. Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics 1996;17:187-94.10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-#Search in Google Scholar

27. Binhi VN. Theoretical concepts in magnetobiology. Electromagn Biol Med 2001;20:43-58.10.1081/JBC-100103159Search in Google Scholar

28. Binhi VN, Rubin AB. Magnetobiology: the kt paradox and possible solutions. Electromagn Biol Med 2007;26:45-62.10.1080/15368370701205677Search in Google Scholar

29. European Commission Joint Research Centre. Reports on theoretical mechanisms and their plausibility, including experimental/epidemiological evidence, computer models and explicit evaluation of contrary arguments [displayed 17 January 2012]. Available at http://ihcp.jrc.ec.europa.eu/ our_activities/public-health/exposure_health_impact_met/ emf-net/docs/reports/D41_Reports%20on%20theoretical% 20mechanisms%20.pdfSearch in Google Scholar

30. Stass DV, Woodward JR, Timmel CR, Hore PJ, McLauchlan KA. Radiofrequency magnetic feld effects on chemical reaction yields. Chem Phys Lett 2000;329:15-22.10.1016/S0009-2614(00)00980-5Search in Google Scholar

31. Scaiano JC. Control of chemical reactions with magnetic fi elds. Interscientia [displayed 11 January 2012]. Available at http://www.uottawa.ca/publications/interscientia/inter.1/magnetic.htmlSearch in Google Scholar

32. Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism for action of electromagnetic fi elds on cells. Biochem Biophys Res Commun 2002;298:98-102.10.1016/S0006-291X(02)02393-8Search in Google Scholar

33. Panagopoulos DJ. Analyzing the health impacts of modern telecommunications microwaves. In: Berhardt LV, editor. Advances in medicine and biology. New York (NY): Nova Science Publishers; 2011. p. 1-55.Search in Google Scholar

34. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.10.1016/j.biocel.2006.07.001Search in Google Scholar

35. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006;5:14.10.1186/1477-3163-5-14Search in Google Scholar

36. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem 2004;11:1163-82.10.2174/0929867043365323Search in Google Scholar

37. Halliwell B, Guttenridge JMC. Free Radicals in Biology and Medicine. 4th ed. New York: Oxford University Press; 2007.Search in Google Scholar

38. Smith C, Marks AD, Lieberman M. Mark’s Basic Medical Biochemistry a Clinical Approach. 2th ed. Phyladelphia: Lippincott Williams & Wilkins; 2005.Search in Google Scholar

39. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335-44.10.1113/jphysiol.2003.049478Search in Google Scholar

40. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993;90:7915-22.10.1073/pnas.90.17.7915Search in Google Scholar

41. Inoue M, Sato EF, Nishikawa M, A-M Park, Kira Y, Imada I, Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 2003;10:2495-505.10.2174/0929867033456477Search in Google Scholar

42. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002;282:C227-41.10.1152/ajpcell.00112.2001Search in Google Scholar

43. Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazura M. Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chem Biol Interact 2006;160:1-40.10.1016/j.cbi.2005.12.009Search in Google Scholar

44. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995;18:321-36.10.1016/0891-5849(94)00159-HSearch in Google Scholar

45. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000;149: 43-5010.1016/S0300-483X(00)00231-6Search in Google Scholar

46. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2004;266:37-56.10.1023/B:MCBI.0000049134.69131.89Search in Google Scholar

47. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002;30:620-50.10.1080/01926230290166724Search in Google Scholar

48. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 2005;15:316-28.10.1016/j.numecd.2005.05.003Search in Google Scholar

49. Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. Effects of acute exposure to the radiofrequency fi elds of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal 2001;26:605-8.10.1016/S0731-7085(01)00492-7Search in Google Scholar

50. Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002;181-82:219-22.10.1016/S0300-483X(02)00448-1Search in Google Scholar

51. Fagan JM, Sleczka BG, Sohar I. Quantitation of oxidative damage to tissue proteins. Int J Biochem Cell Biol 1999;31:751-7.10.1016/S1357-2725(99)00034-5Search in Google Scholar

52. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000;32:307-26.10.1081/DMR-100102336Search in Google Scholar

53. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl group as biomarkers of oxidative stress. Clin Chim Acta 2003;329:23-38.10.1016/S0009-8981(03)00003-2Search in Google Scholar

54. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010;48:749-62.10.1016/j.freeradbiomed.2009.12.022282397720045723Search in Google Scholar

55. Perricone C, De Carolis C, Perricone R. Glutathione-a key player in autoimmunity. Autoimmun Rev 2009;8:697-701.10.1016/j.autrev.2009.02.02019393193Search in Google Scholar

56. Aw TY. Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol Sci 2003;18:201-4.Search in Google Scholar

57. Trošić I, Bušljeta I. Erythropoietic dynamic equilibrium in rats maintained after microwave irradiation. Exp Pathol 2006;57:247-51.Search in Google Scholar

58. Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 2004;10:1611-26.10.2174/138161204338466415134560Search in Google Scholar

59. International Agency for Research on Cancer (IARC). Non- Ionizing Radiation, Part 1: Static and Extremely Low- Frequency (ELF) Electric and Magnetic Fields. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 80. Lyon: IARC; 2002.Search in Google Scholar

60. Elwood JM. Epidemiological studies of radio frequency exposures and human cancer. Bioelectromagnetics 2003;Suppl 6:S63-73.10.1002/bem.1014214628307Search in Google Scholar

61. Mark SC. Membrane potential perturbations induced in tissue cells by pulsed electric fields. Bioelectromagnetics 1995;16:255-62.10.1002/bem.22501604087488259Search in Google Scholar

62. McClanahan BJ, Phillips RD. The infl uence of electric fi eld exposure on bone growth and fracture repair in rats. Bioelectromagnetics 1983;4:11-9.10.1002/bem.22500401036838665Search in Google Scholar

63. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fi elds affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 2007;28:519-28.10.1002/bem.2033617516509Search in Google Scholar

64. Polk C, Postow E. Handbook of Biological Effects of Electromagnetic Fields. 2nd ed. Boca Raton: CRC Press; 1996.Search in Google Scholar

65. Pokorny J, Jelίnek F, Trkal V, Šrobar F. Vibration in microtubules. In: Bersam F, editor. Electricity and magnetism in biology and medicine. Bologna: Kluwer Academic/Plenum Publishers; 1999. p. 967-70.10.1007/978-1-4615-4867-6_232Search in Google Scholar

66. Adey WR. Cell and molecular biology associated with radiation fi elds of mobile telephones. In: Stone WR, Ueno S, editors. Review of radio science 1996-1999. Oxford: Oxford University Press; 1999. p. 845-72.Search in Google Scholar

67. Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A, Triglia A. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic fi eld. Neurosci Lett 2010;473:52-5.10.1016/j.neulet.2010.02.01820156525Search in Google Scholar

68. Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, Ye J, Sun L. Electromagnetic noise inhibits radiofrequency radiationinduced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis 2008;14:964-9.Search in Google Scholar

69. Dasdag S, Bilgin HM, Akdag MZ, Celik H, Aksen F. Effect of long term mobile phone exposure on oxidativeantioxidative processes and nitric oxide in rats. Biotechnol Biotechnol Equip 2008;22:992-7.10.1080/13102818.2008.10817595Search in Google Scholar

70. Ozguner F, Altinbas A, Ozaydin M, Dogan A, Vural H, Kisioglu AN, Cesura G, Yildirim NG. Mobile phone-induced myocardial oxidative stress: protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol Ind Health 2005;21:223-30.10.1191/0748233705th228oa16342473Search in Google Scholar

71. Yurekli AI, Ozkan M, Kalkan T, Saybasil H, Tuncel H, Atukeren P, Gumustas K, Seker S. GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn Biol Med 2006;25:177-88.10.1080/1536837060087504216954120Search in Google Scholar

72. Ilan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S. Ginkgo biloba prevents mobile phobe-induced oxidative stress in rat brain. Clin Chim Acta 2004;340:153-62.10.1016/j.cccn.2003.10.01214734207Search in Google Scholar

73. De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and dna damage in human spermatozoa in vitro. PLoS One 2009;4:e6446.10.1371/journal.pone.0006446271417619649291Search in Google Scholar

74. Marjanović AM. Oksidacijski stres u osoba profesionalno izloženih mikrovalnom zračenju [Oxidative stress in subjects occupationally exposed to microwave radiation, in Croatian] [Graduation thesis]. Zagreb: Faculty of Science, University of Zagreb; 2009.Search in Google Scholar

75. Xu S, Zhou Z, Zhang L, Yu Z, Zhang W, Wang Y, Wang X, Li M, Chen Y, Chen C, He M, Zhang G, Zhong M. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res 2010;1311:189-96.10.1016/j.brainres.2009.10.06219879861Search in Google Scholar

76. Meral I, Mert H, Mert N, Deger Y, Yoruk I, Yetkin A, Keskin S. Effects of 900-MHz electromagnetic fi eld emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res 2007;1169:120-4.10.1016/j.brainres.2007.07.01517674954Search in Google Scholar

77. Simko M, Hartwig C, Lantowa M, Lupke M, Mattsson M-O, Rahman Q, Rollwitz J. Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fi elds and ultrafi ne particles in human Mono Mac 6 cells. Toxicol Lett 2006;161:73-82.10.1016/j.toxlet.2005.08.00516153791Search in Google Scholar

78. Khalil AM, Alshamali AM, Gagaa MH. Detection of oxidative stress induced by mobile phone radiation in tissues of mice using 8-oxo-7, 8-dihydro-2’-deoxyguanosine as a biomarker. World Acad Sci Eng Technol 2011;76:657-62.Search in Google Scholar

79. Luukkonen J, Juutilainen J, Naarala J. Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics 2010;31:417-24.10.1002/bem.2058020564172Search in Google Scholar

80. Brescia F, Sarti M, Massa R, Calabrese ML, Sannino A, Scartti MR. Reactive oxygen species formation is not enhanced by exposure to UMTS 1950 MHz radiation and co-exposure to ferrous ions in Jurkat cells. Bioelectromagnetics 2009;7:525-35.10.1002/bem.2050219475646Search in Google Scholar

81. Ferreira AR, Bonatto F, de Bittencourt Pasquali MA, Polydoro M, Dal-Pizzol F, Fernandez C, de Salles AAA, Moreira JCF. Oxidative stress effects on the central nervous system of rats after acute exposure to ultra high frequency electromagnetic fi elds. Bioelectromagnetics 2006;27:487-93.10.1002/bem.2023316715528Search in Google Scholar

82. Zmyślony M, Politanski P, Rajkowska E, Szymczak W, Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 2004;25:324-8.10.1002/bem.1019115197754Search in Google Scholar

83. Hoyto A, Luukkonen J, Juutilainen J, Naarala J. Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radiofrequency radiation and oxidants. Radiat Res 2008;170:235-43.10.1667/RR1322.118666817Search in Google Scholar

84. Luukkonen J, Hakulinen P, Maki-Paakkanen J, Juutilainen J, Naarala J. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SHSY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat Res 2009;662:54-8.10.1016/j.mrfmmm.2008.12.00519135463Search in Google Scholar

85. International Agency for Research on Cancer (IARC). IARC classifi es radiofrequency electromagnetic fi elds as possibly carcinogenic to humans [displayed 11 January 2012]. Available at http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdfSearch in Google Scholar

ISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other