Assessment of Tryptophol Genotoxicity in Four Cell Lines In Vitro: A Pilot Study with Alkaline Comet Assay

Open access

Assessment of Tryptophol Genotoxicity in Four Cell Lines In Vitro: A Pilot Study with Alkaline Comet Assay

Tryptophol is an aromatic alcohol and secondary metabolite of the opportunistic fungus Candida albicans. Although its toxicity profile at cell level has been poorly investigated, recent data point to cytotoxic, cytostatic, and genotoxic effects in lymphocytes and the induction of apoptosis in leukaemic blood monocytes. In this pilot study we evaluated the genotoxicity of tryptophol in vitro on four permanent cell lines of animal and human origin: ovary cells, alveolar epithelium, liver cells, and blood monocytes using the alkaline comet assay. We selected cells that might be principal targets of tryptophol and other low-molecular geno(toxins) secreted by Candida albicans during host invasion. Our results suggest that tryptophol applied in vitro at 2 mmol L-1 for 24 h damages DNA in HepG2, A549 and THP-1 cells, obviously due to bioactivation and/or decomposition of the parent compound, which results in the formation of more genotoxic compound(s) and production of reactive species that additionally damage DNA. On the other hand, notably lower levels of primary DNA damage were recorded in CHO cells, which lack metabolic activity. Future studies with tryptophol should look further into mechanisms involved in its toxic action and should focus on other cell types prone to infection with Candida spp. such as vaginal epithelial cells or keratinocytes of human origin.

Dufour N, Rao RP. Secondary metabolites and other small molecules as intercellular pathogenic signals. FEMS Microbiol Lett 2011;314:10-7.

Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001;67:2982-92.

Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum sensing molecule in Candida albicans. Proc Natl Acad Sci USA 2004;101:5048-52.

Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 2006;20:1150-61.

Enjalbert B, Whiteway M. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell 2005;4:1203-10.

Lo H-J, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997;90:939-49.

Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol 2008;74:7211-8.

Ernst JF. Transcription factors in Candida albicans environmental control of morphogenesis. Microbiology 2000;146:1763-74.

Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 2007;6:2429-36.

Oh K-B, Miyazawa H, Naito T, Matsuoka H. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci USA 2001;98:4664-8.

Shchepin R, Hornby JM, Burger E, Niessen T, Dussault P, Nickerson KW. Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem Biol 2003;10:743-50.

Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 1969;163:192-4.

Sugawara F, Strobel GA. Tryptophol a phytotoxin produced by Drechslera nodulosum. Phytochemistry 1987;26:1349-51.

Kosalec I, Pepeljnjak S, Delaforge M, Puel O, Galtier P. Possible toxicity of clinical isoates of Candida albicans. In: Balenović M, editor. Proceedings of the Third Croatian Congress of Microbiology with International Participation; 4-7 Oct 2004. Poreč, Croatia. Zagreb: Hrvatsko mikrobiološko društvo; 2004. p. 115-6.

Laćan G, Magnus V, Šimaga Š, Iskrić S, Hall PJ. Metabolism of tryptophol in higher and lower plants. Plant Physiol 1985;78:447-54.

Seed JR, Sechelski J. Tryptophol levels in mice injected with pharmacological doses of tryptophol, and the effect of pyrazole and ethanol on these levels. Life Sci 1977;21:1603-10.

Cornford EM, Crane PD, Braun LD, Bocash WD, Nyerges AM, Oldendorf WH. Reduction in brain glucose utilization rate after tryptophol (3-indole ethanol) treatment. J Neurochem 1981;36:1758-65.

Koster RL, Grekoff JK. The physiological, hemolytic and immunosuppressive effects of possible trypanosomal metabolites in white mice. Bios 1981;52:227-36.

Tanaka K, McConnell B, Niemezura WP, Mower HF. Characterization and mutagenicity of 1-nitrosotryptophol and 6-nitrotryptophol possible genotoxic substances associated with smoking and alcohol consumption. Cancer Lett 1989;44:109-16.

Inagaki S, Morimura S, Shigematsu T, Kida K, Akutagawa H. Apoptosis induction by vinegar produced from boiled extract of black soybeans in human monoblastic leukemia U937 cells: Difference in sensitivity to cell toxicity compared to normal lymphocytes. Food Sci Technol Res 2005;11:311-7.

Inagaki S, Morimura S, Gondo K, Tang Y, Akutagawa H, Kida K. Isolation of tryptophol as an apoptosis-inducing component of vinegar produced brom boiled extract of black soybean in human monoblastic leukemia U937 cells. Biosci Biotechnol Biochem 2007;71:371-9.

Inagaki S, Morimura S, Tang Y, Akutagawa H, Kida K. Tryptophol induces death receptor (DR) 5-mediated apoptosis in U937 cells. Biosci Biotechnol Biochem 2007;71:2065-8.

Kosalec I, Šafranić A, Pepeljnjak S, Bačun-Družina V, Ramić S, Kopjar N. Genotoxicity of tryptophol in a battery of short-term assays on human white blood cells in vitro. Basic Clin Pharmacol Toxicol 2008;102:443-52.

Kosalec I. Toksinogenost i mehanizmi djelovanja virulentnih čimbenika Candida vrsta [Toxicogenicity and mechanisms of action of virulence factors of Candida species] [PhD thesis]. Zagreb: Faculty of Pharmacy and Biochemistry, University of Zagreb; 2006.

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91.

Poli P, Buschini A, Spaggiari A, Rizzoli V, Carlo-Stella C, Rossi C. DNA damage by tobacco smoke and some antiblastic drugs evaluated using the comet assay. Toxicol Lett 1999;108:267-76.

Chi-Square, Cramer's V, and Lambda [displayed 20 January 2011]. Available at http://faculty.vassar.edu/lowry/newcs.html

Mitchemmore CL, Chipman JK. DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutat Res 1998;399:135-47.

Tice RR, Agurell E, Anderson D. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000;35:206-21.

Salopek-Sondi B, Piljac-Žegarac J, Magnus V, Kopjar N. Free radical scavenging activity and DNA damaging potential of auxins IAA and 2-Methyl-IAA evaluated in human neutrophils by the alkaline comet assay. J Biochem Mol Toxicol 2010;24:165-73.

Kosalec I, Puel O, Delaforge M, Kopjar N, Antolović R, Jelić D, Matica B, Galtier P, Pepeljnjak S. Isolation and cytotoxicity of low-molecular-weight metabolites of Candida albicans. Front Biosci 2008;13:6893-904.

Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997;77:517-44.

Ni R, Leo MA, Zhao J, Lieber CS. Toxicity of β-carotene and its exacerbation by acetaldehyde in HepG2 cells. Alcohol Alcohol 2001;36:281-5.

Meurman JH, Uittamo J. Oral micro-organisms in the etiology of cancer. Acta Odontol Scand 2008;66:321-6.

Darroudi F, Natarajan AT. Metabolic activation of chemicals to mutagenic carcinogens by human hepatoma microsomal extracts in Chinese hamster ovary cells (in vitro). Mutagenesis 1993;8:11-5.

Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998;402:185-202.

Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutat Res 2000;468:213-25.

Majer BJ, Mersch-Sundermann V, Darroudi F, Laky B, de Wit K, Knasmüller S. Genotoxic effects of dietary and lifestyle related carcinogens in human derived hepatoma (HepG2, Hep3B) cells. Mutat Res 2004;551:153-66.

Badawy AAB, Evans M. Alcohol and tryptophan metabolism. Alcohol Alcohol 1974;9:97-115.

Cornford EM, Bocash WD, Braun LD, Crane PD, Oldendorf WH. Rapid distribution of tryptophol (3-indole ethanol) to the brain and other tissues. J Clin Invest 1979;63:1241-8.

Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 1998;243:359-66.

Carmichael J, Mitchell JB, Friedman N, Gazdar AF, Russo A. Glutathione and related enzyme activity in human lung cancer cell lines. Br J Cancer 1988;58:437-40.

Speit G, Bonzheim I. Genotoxic and protective effects of hyperbaric oxygen in A549 lung cells. Mutagenesis 2003;18:545-8.

Chipinda I, Ruwona TB, Templeton SP, Siegel PD. Use of the human monocytic leukemia THP-1 cell line and co-incubation with microsomes to identify and differentiate hapten and prohapten sensitizers. Toxicology 2011;280:135-43. DOI:10.1016/j.tox.2010.12.004.

Baird SK, Reid L, Hampton MB, Gieseg SP. OxLDL induced cell death is inhibited by the macrophage synthesised pterin, 7,8-dihydroneopterin, in U937 cells but not THP-1 cells. Biochim Biophys Acta 2005;1745:361-9.

Roggen E, Aufderheide M, Cetin Y, Dearman RJ, Gibbs S, Hermanns I, Kimber I, Regal JF, Rovida C, Warheit DB, Uhlig S, Casati S. The development of novel approaches to the identification of chemical and protein respiratory allergens. Altern Lab Anim 2008;36:591-8.

Heyes MP, Chen CY, Major EO, Saito K. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 1997;326:351-6.

Weiss SJ, LoBuglio AF, Kessler HB. Oxidative mechanisms of monocyte-mediated cytotoxicity. Proc Natl Acad Sci USA 1980;77:584-7.

Nakazato T, Sagawa M, Yamato K, Xian M, Yamamoto T, Suematsu M, Ikeda Y, Kizaki M. Myeloperoxidase is a key regulator of oxidative stress mediated apoptosis in myeloid leukemic cells. Clin Cancer Res 2007;13:5436-45.

Byun J, Mueller DM, Fabjan JS, Heinecke JW. Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein. FEBS Lett 1999;455:243-6.

Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003;11:30-6.

Mavor AL, Thewes S, Hube B. Systemic fungal infections caused by Candida species: Epidemiology, infection process and virulence attributes. Curr Drug Targets 2005;6:863-74.

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2017: 1.117
5-year IMPACT FACTOR: 1.335



CiteScore 2017: 1.24

SCImago Journal Rank (SJR) 2017: 0.341
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 26
PDF Downloads 20 20 8