Dose Rate Effect of Pulsed Electron Beam on Micronucleus Frequency in Human Peripheral Blood Lymphocytes

Dose Rate Effect of Pulsed Electron Beam on Micronucleus Frequency in Human Peripheral Blood Lymphocytes

The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7±0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81-95.

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. Human project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 2003;534:65-75.

  • International Atomic Energy Agency (IAEA). Biological dosimetry: Chromosomal aberration analysis for dose assessment. Technical Reports Series no. 260. Vienna: IAEA; 1986.

  • Mill AJ, Wells J, Hall SC, Butler A. Micronucleus induction in human lymphocytes: comparative effects of X rays, alpha particles, beta particles and neutrons and implications for biological dosimeter. Radiat Res 1996;145:575-85.

  • Bhat NN, Rao BS. Dose rate effect on micronucleus induction in cytokinesis blocked human peripheral blood lymphocytes. Radiat Prot Dosim 2003;106:45-52.

  • Solomon FDP, Venkatachalam P, Jeevanram RK. Analysis of radiation dose response curve obtained with cytokinesis block micronucleus assay. Nucl Med Biol 1997;24:413-6.

  • Prosser JS, Moquet JE, Lloyd DC, Edwards AA. Radiation induction of micronuclei in human lymphocytes. Mutat Res 1988;199:37-45.

  • The dose response relationship obtained at constant irradiation times for the induction of chromosome aberrations in human lymphocytes by Cobalt-60 Gamma rays. Radiat Environ Biophys 1984;23:179-189.

  • Hall EJ, Brenner DJ. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 1991;21:1403-14.

  • Purrott RJ, Reeder EJ, Lovell S. Chromosome aberration yields induced in human lymphocytes by 15 MeV electrons given at a conventional dose-rate and in microsecond pulses. Int J Radiat Biol 1977;31:251-6.

  • Tillman C, Grafstrom G, Jonsson AC, Jonsson BA, Mercer I, Mattsson S, Strand SE, Svanberg S. Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma X-ray source. Radiology 1999;213:860-5.

  • Shinohara K, Nakano H, Miyazaki N, Tago M, Kodama R. Effects of single pulse (≤1ps) X-rays from laser-produced plasmas on mammalian cells. J Radiat Res 2004;45:509-14.

  • Berry RJ, Hall EJ, Forster DW, Storr TH, Goodman MJ. Survival of mammalian cells exposed to X-rays at ultra high dose rates. Br J Radiol 1969;42:102-7.

  • Prempree T, Michelsen A, Merz T. The repair time of chromosome breaks induced by pulsed X-rays of ultra high dose rate. Int J Radiat Biol 1969;15:571-4.

  • Hornsey S. Differences in survival of jejunal crypt cells after radiation delivered at different dose rates. Br J Radiol 1970;43:802-6.

  • Acharya S, Ganesh S, Bhat NN, Siddappa K, Narayana Y. The effect of electron and gamma irradiation on the induction of micronuclei in Cytokinesis-blocked human blood lymphocytes. Radiat Environ Biophys 2009;48:197-203.

  • Sinclair WK. The linear no-threshold response: why not linearity? Med Phys 1998;25:285-90.

  • Gupta BL, Narayan GR, Nilekani SR, Bhat RM, Kaul A, Bemalkhedkar MM, Soni HC, Ganesh S, Nagesh YN, Prashant KC, Umakanth D, Gnana Prakash AP, Siddappa K. Preliminary dosimetry studies for microtron using chemical dosimeter. J Radiat Prot Environ 1999;22:169-74.

  • Siddappa K, Ganesh S, Balakrishna KM, Ramamurthi SS, Soni HC, Shrivastava P, Sheth Y, Hemnani R. Variable energy microtron for R & D work. Radiat Phys Chem 1998;51:441-2.

  • Fenech M, Morley AA. Measurement of micronuclei in lymphocytes. Mutat Res 1985;147:29-36.

  • Heddle JA. A rapid in vivo test for chromosomal damage. Mutat Res 1973;18:187-90.

  • Papworth DG. Appendix to paper by Savage JRK. Sites of radiation induced chromosome exchanges. Curr Top Radiat Res 1970;6:129-94.

  • Edwards AA, Lloyd DC, Purrott RJ. Radiation induced chromosomal aberrations and the Poisson distribution. Radiat Environ Biophys 1979;116:89-100.

  • International Commission on Radiation Units and Measurements (ICRU). The dosimetry of pulsed radiation (Report 34). Washington (DC): ICRU; 1983.

  • Bhat NN, Rao BS. Dose rate effect on micronuclei induction in cytokinesis blocked human peripheral blood lymphocytes. Radiat Prot Dosim 2003;106:45-52.

  • Kormos C, Köteles GJ. Micronuclei in X-irradiated human lymphocytes. Mutat Res 1988;199:31-5.

  • Deveaux LC, Wells DP, Hunt A, Webb T, Beezhold W, Harmon JF. Accelerator-based radiation sources for next-generation radiobiological research. Nucl Instrum Method Phys Res Sec A 2006;562:981-4.

  • Epp ER, Weiss H, Santomasso A. The oxygen effect in bacteria cells irradiated with high intensity pulsed electrons. Radiat Res 1968;34:320-5.

  • Hall EJ. Radiation dose rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 1972;45:81-97.

  • Hornsey S, Alper T. Unexpected dose rate effect in the killing of mice by radiation. Nature 1966;210:212-3.

  • Bellucci M. Modifications in the biological effect of X-radiation with respect to the rhythmic fractionation of the radiation beam. Radioterap Radiobiol E Fiz Med 1960;14:188-204.

  • Hood SL, Norris G. Human cell survival after pulsed X-irradiation. Radiat Res 1965;24:81-7.

  • Town CD. Effects of high dose rates on survival of mammalian cells. Nature 1967;215:847-8.

  • Bewes JM, Suchowerska N, Jackson M, Zhang M, McKenzie DR. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT). Phys Med Biol 2008;53:3567-78.


Journal + Issues