Comparison of geotourism assessment models: and experiment in Bakony–Balaton UNSECO Global Geopark, Hungary

Márton Pál 1  and Gáspár Albert 1
  • 1 ELTE Eötvös Loránd University, Department of Cartography and Geoinformatics, Pázmány Péter prom, 1117, Budapest, Hungary


Geological and scenic values of locations are the non-living curiosities that can be preserved and popularized a lot easier using the institutional background of geotourism, such as geoparks. UNESCO Global Geoparks Network is responsible for protecting and fostering natural, scenic and cultural values and especially geosites that are the exciting visible physical elements. Our goal was to quantify the geotourism potential around Csopak, a scenic village in the Balaton Uplands giving home for the headquarter of the Bakony-Balaton UNESCO Global Geopark. After designating 216 potential geosites using topographic and geological maps, we applied two assessment models: the Geosite Assessment Model (GAM) and the Modified Geosite Assessment Model (M-GAM). GAM has been applied with good results in Hungary on different areas, but M-GAM has not been used before. As M-GAM involves tourists into the process counting with their opinion, it may give a more realistic view of the geosites. The two methods produced different but comparable final values of geotourism potential counted from the Main Value and Additional Value scores. We discovered that the proportion of the difference of these values carries major information. The ratio of ΔAV/ΔMV used as linear functions and depicted on diagrams can derive which values are more important for the visitors. From this result we can draw conclusions about the future development trends: scientific or infrastructural values should be more effectively fostered. Using our results, geosites can be handled and developed as visitors expect it.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Albert, G. (2004). Geoscientific results in “tangible” format: the geotourist map. – only in Hungarian: Földtudományok eredménye „kézzelfoghatóan”: a földtani túratérkép. Geodézia és kartográfia, 51(7), 27-30.

  • Albert, G., Pál, M., & Schwarcz, Gy. (2018). Geological hiking map of the surroundings of Csopak. 1:30 000, Schwarcz Térkép.

  • Bakony–Balaton Geopark. (2018). What is a geopark? – only in Hungarian: Mi a geopark? Source: [accessed: 2018. 08. 30.]

  • Haas, J. (ed.). (2012). Geology of Hungary. Springer Science & Business Media.

  • Budai, T., Császár, G., Csillag, G., Dudko, A., Koloszár, L., & Majoros, Gy. (1999). Geology of the Balaton Highland. Budapest, Hungarian Geological Survey. 169-257.

  • Budai, T., Csillag, G., Dudko, A., & Koloszár, L. (1999). Geological map of the Balaton Highland. Budapest, Hungarian Geological Survey.

  • Csorvási, N. (2017). Evaluation of geotouristic potential on a study area of Fejér County. – only in Hungarian: Geoturisztikai potenciálfelmérés Fejér megyei mintaterületen. XXXIII. National Conference of Scientific Students’ Associations, Debrecen, Hungary.

  • Dowling, R. (2011). Geotourism’s Global Growth. In Geoheritage, 3(1) pp. 1-13.

  • Dövényi, Z. (ed). (2012). Geography of the Carpathian Basin. – only in Hungarian: A Kárpát-medence földrajza. Budapest, Publishing house of Academy.

  • Futó, J. (2013). Tour proposals – Natural experiences next to Lake Balaton and in Bakony Mountains. – only in Hungarian: Túrajavaslatok - A természet élménye a Balaton mellékén és a Bakonyban. Balaton Uplands National Park Directorate, Csopak, Hungary.

  • Grandgirard, V. (1997). Géomorphologie, protection de la nature et gestion du paysage. Thèse de doctorat en géographie, université de Fribourg, p. 210.

  • Grant, C. (2010). Towards a typology of visitors to geosites. In Second Global Geotourism Conference, Making Unique Landforms Understandable. Mulu, Sarawak, Malaysia.

  • Hose, T. A. (1995). Selling the Story of Britain’s Stone. In Environmental Interpretation, 10(2) pp. 16-17.

  • Hungarian Geological Society (2018). Geosite Day – only in Hungarian: Geotóp Nap. Source: [accessed: 2018. 08. 30.]

  • Lai, L., & Graefe, A. (2000). Identifying Market Potential and Destination Choice Factors of Taiwanese Overseas Travelers. Journal of Hospitality & Leisure Marketing, 6(4), pp. 45-65.

  • Hungarian People’s Army Mapping Agency (1964): Map key of 1:25 000, 1:50 000 and 1:100 000 scaled topographic maps. Budapest, Hungary.

  • Melián-González, A., & Garcia-Falcón, J. (2003). Competitive Potential of Tourism in Destinations. Annals of Tourism Research, 30(3), pp. 720-740.

  • Mining and Geological Survey of Hungary (2018): Map of Hungarian key sections. Source: [accessed: 2018. 08. 30]

  • Newsome, D., & Dowling, R. (2010). Geotourism: The Tourism of Geology and Landscape.

  • Pereira, P. & Pereira, D. (2010). Methodological guidelines for geomorphosite assessment. Géomorphologie: relief processus environnement, pp. 215-222.

  • Rivas, V., Rix, K., Frances, E., Cendrero, A., Brunsden, D. (1997). Geomorphological indicators for environmental impact assessment: consumable and non-consumable geomorphological resources. Geomorphology 18, pp. 169-182.

  • Szepesi, J., Harangi, S., Ésik, Z., Novák, T., Lukács, R., & Soós, I. (2016). Volcanic Geoheritage and Geotourism Perspectives in Hungary: a Case of an UNESCO World Heritage Site, Tokaj Wine Region Historic Cultural Landscape, Hungary. Geoheritage.

  • Tomić, N., & Božić, S. (2014). A modified geosite assessment model (M-GAM) and its application on the Lazar Canyon area (Serbia). International journal of environmental research, 8(4), 1041-1052.

  • Vujičić, M., Vasiljević, D., Marković, S., Hose, T., Lukić, T., Hadžić, O., & Janićević, S. (2011). Preliminary geosite assessment model (gam) and its application on Fruška gora mountain, potential geotourism destination of Serbia. Acta Geographica Slovenica, 51(2), 361-377.

  • Watson, E., Slaymaker, O. (1966). Mid-Wales, a survey of geomorphological sites. Department of Geography, University College of Wales, Aberystwyth, p. 92.


Journal + Issues