Nanotechnology in food safety and quality assessment: potentiality of nanoparticles in diagnosis of foodborne pathogens

Open access


A rapid microbial detection in different biological and environmental material is a key of preventing several foodborne diseases. By implementing nanotechnology into food safety sector, a great step towards successful, reliable and sensible detection methods of foodborne pathogens has been achieved. Therefore, the aim of this review was to illustrate some of the principal functions of nanotechnology-based techniques, used for microbial detection in the last few years. Regarding consumer’s health, the review also discusses the question of safety, concerning human exposure to nanomaterials (NMs). Due to their different composition-unique properties, such as greater penetrability, reactivity and high surface to volume ratio, NMs have been coupled to several biomolecules and integrated in special system devices, resulting in improvement of sensitivity in transmitting biological signal informations in a shorter time. Among all the NMs, gold, magnetic and fluorescent nanoparticles (NPs) have been widely used, also in microbial diagnosis. Despite the success of linking nanotechnology to detection of foodborne pathogens, the exposure to various NMs could also be a matter of potential risk to human health, although conclusions still need to be definitely proven.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Agasti SS Rana S Park M-H Kim CK You C-C Rotello VM. Nanoparticles for detection and diagnosis. Adv. Drug Deliv. Rev. 2010; 62:316-28.

  • 2. Ali MA. Detection of E.coli O157:H7 in feed samples using gold nanoparticles sensor. Int.J.Curr.Microbiol. App.Sci. 2014;697-708.

  • 3. Amini SM Gilaki M Karchani M. Safety of nanotechnology in food industries. Electron. physician.2014;6:962-8.

  • 4. Arora P Sindhu A Dilbaghi N Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011;28:1-12.

  • 5. El Badawy AM Silva RG Morris B Scheckel KG Suidan MT Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011;45:283-7.

  • 6. Berry CC Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys.2003;36:R198-R206.

  • 7. Billington C Hudson JA D’Sa E. Prevention of bacterial foodborne disease using nanobiotechnology. Nanotechnol. Sci. Appl. 2014;7:73-83.

  • 8. Boehm DA Gottlieb PA Hua SZ. On-chip microfluidic biosensor for bacterial detection and identification. Sensors Actuators B Chem. 2007;126:508-14.

  • 9. Bolhassani A Javanzad S Saleh T Hashemi M Aghasadeghi MR Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 2014;10:321-32.

  • 10. Borm PJA Kreyling W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004;4:521-31.

  • 11. Braydich-Stolle LK Schaeublin NM Murdock RC Jiang J Biswas P Schlager JJ Hussain SM. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanoparticle Res. 2008;11:1361-74.

  • 12. Brunner TJ Wick P Manser P Spohn P Grass RN Limbach LK Bruinink A Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos silica and the effect of particle solubility. Environ. Sci. Technol. 2006;40:4374-81.

  • 13. Chaudhry Q Scotter M Blackburn J Ross B Boxall A Castle L Aitken R Watkins R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2008;25:241-58.

  • 14. Chen Z Mauk MG Wang J Abrams WR Corstjens PL Niedbala RS Malamud D Bau HH. A microfluidic system for saliva-based detection of infectious diseases. Ann. N. Y. Acad. Sci. 2007;1098:429-36.

  • 15. Chung MS Kim CM Ha SD. Detection and enumeration of microorganisms in ready-to-eat foods ready-tocook foods and fresh-cut produce in Korea. J. Food Saf. 2010;30:480-89.

  • 16. Cui S Zhou S Chen C Qi T Zhang C Oh J.. A simple and rapid immunochromatographic strip test for detecting antibody to porcine reproductive and respiratory syndrome virus. J. Virol. Methods.2008;152:38-42.

  • 17. Doria G Conde J Veigas B Giestas L Almeida C Assuncao M João R Pedro VB. Noble metal nanoparticles for biosensing applications. Sensors (Basel). 2012;12:1657-87.

  • 18. Dutse SW Yusof NA. Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors (Basel). 2011;11:5754-68.

  • 19. Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb. Cell Fact. 2006;5:9.

  • 20. Geszke-Moritz M Moritz M. Quantum dots as versatile probes in medical sciences: synthesis modification and properties. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:1008-21.

  • 21. Gill P Alvandi A-H Abdul-Tehrani H Sadeghizadeh M. Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn. Microbiol. Infect. Dis. 2008;62:119-24.

  • 22. Giri S Sykes EA Jennings TL Chan WCW. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano. 2011;5:1580-7.

  • 23. Gupta AK Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021.

  • 24. Gupta AK Wells S. Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation Characterization and Cytotoxicity Studies. IEEE Trans. Nanobioscience. 2004;3:66-73.

  • 25. Hahn MA Tabb JS Krauss TD. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem. 2005;77:4861-9.

  • 26. Halfpenny KC Wright DW. Nanoparticle detection of respiratory infection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:277-90.

  • 27. He Y Kang Z-H Li Q-S Tsang CHA Fan C-H Lee S-T. Ultrastable highly fluorescent and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. Engl. 2009;48:128-32.

  • 28. Hötzer B Medintz IL Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small. 2012;8:2297-326.

  • 29. Huang SH. Gold nanoparticle-based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens. Clin.Chim. Acta. 2006;373:139-43.

  • 30. Huang YF Wang YF Yan XP. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol. 2010;44:7908-13.

  • 31. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007;53:2002-9.

  • 32. Kaittanis C Naser SA Perez JM. One-step nanoparticlemediated bacterial detection with magnetic relaxation. Nano Lett. 2007;7:380-3.

  • 33. Kaittanis C Nath S Perez JM. Rapid nanoparticlemediated monitoring of bacterial metabolic activity and assessment of antimicrobial susceptibility in blood with magnetic relaxation. PLoS One. 2008;3:e3253.

  • 34. Kaittanis C Santra S Perez JM. Emerging nanotechnologybased strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev. 2010;62:408-23.

  • 35. Kalpana Sastry R Anshul S Rao NH. Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol. 2013;50:831-41.

  • 36. Karimi Z Karimi L Shokrollahi H. Nano-magnetic particles used in biomedicine: core and coating materials. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:2465-75.

  • 37. Kim BYS Rutka JT Chan WCW. Nanomedicine. N. Engl. J. Med. 2010;363:2434-43.

  • 38. Kim G Moon J-H Moh C-Y Lim J. A microfluidic nanobiosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 2015;67:243-7.

  • 39. Klaine SJ Alvarez PJJ Batley GE Fernandes TF Handy RD Lyon DY Mahendra S McLaughlin MJ Lead JR.Nanomaterials in the environment: behavior fate bioavailability and effects. Environ. Toxicol. Chem. 2008;27:1825.

  • 40. Koedrith P Thasiphu T Weon J-I Boonprasert R Tuitemwong K Tuitemwong P. Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal. 2015;2015:510982.

  • 41. Koh I Josephson L. Magnetic nanoparticle sensors. Sensors (Basel). 2009;9:8130-45.

  • 42. Law JW-F Ab Mutalib N-S Chan K-G Lee L-H. Rapid methods for the detection of foodborne bacterial pathogens: principles applications advantages and limitations. Front. Microbiol. 2014;5:770.

  • 43. Lee H Yoon T-J Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. Engl. 2009; 48:5657-60.

  • 44. Lee J Mahendra S Alvarez PJJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 2010;4:3580-90.

  • 45. Lee N Kwon KY Oh SK Chang H-J Chun HS Choi S-W. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7 Bacillus cereus Vibrio parahaemolyticus Salmonella spp. Listeria monocytogenes and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog. Dis. 2014;11:574-80.

  • 46. Levitt MH. Spin Dynamics: Basics of Nuclear Magnetic Resonance 2nd Edition - Malcolm H. Levitt. Wiley. 2008;740.

  • 47. Liandris E Gazouli M Andreadou M Sechi LA Rosu V Ikonomopoulos J. Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One. 2011;6:e20026.

  • 48. Liao JY Song Y Liu Y. A new trend to determine biochemical parameters by quantitative FRET assays. Acta Pharm. Sinic. 2015;36:1408-15.

  • 49. LIU R MUNRO S NGUYEN T SIUDA T SUCIU D BIZAK MSLOTA M FUJI HS DANLEY D McSHEA A. Integrated Microfluidic CustomArray Device for Bacterial Genotyping and Identification. J. Assoc. Lab. Autom. 2006;11:360-367.

  • 50. Liu WT. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 2006;102:1-7.

  • 51. Liz-Marzan LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006;22:32-41.

  • 52. Maalouf R Hassen WM Fournier-Wirth C Coste J Jaffrezic-Renault N. Comparison of two innovatives approaches for bacterial detection: paramagnetic nanoparticles and self-assembled multilayer processes. Microchim. Acta 2008;163:157-161.

  • 53. Magnuson BA Jonaitis TS Card JW. A brief review of the occurrence use and safety of food-related nanomaterials. J. Food Sci. 2011;76:R126-33.

  • 54. Mairhofer J Roppert K Ertl P. Microfluidic systems for pathogen sensing: a review. Sensors (Basel). 2009;9:4804-23.

  • 55. Mandal PK Biswas AK Choi K PU. Methods for Rapid Detection of Foodborne Pathogens: An Overview. Amer j Food. technol. 2011;87-102.

  • 56. Martirosyan A Schneider Y-J. Engineered nanomaterials in food: implications for food safety and consumer health. Int. J. Environ. Res. Public Health.2014;11:5720-50.

  • 57. Murray AR Kisin E Leonard SS Young SH Kommineni C Kagan VE Castranova V Shvedova AA. Oxidative stress and inflammatory response in dermal toxicity of singlewalled carbon nanotubes. Toxicology. 2009;257:161-71.

  • 58. Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001;74:1-8.

  • 59. Oh WK Jeong YS Song J Jang J. Fluorescent europiummodified polymer nanoparticles for rapid and sensitive anthrax sensors. Biosens. Bioelectron. 2011;29:172-7.

  • 60. Oliver SP Jayarao BM Almeida RA. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2005;2:115-29.

  • 61. Omurtag I Paulsen P Hilbert F Smulders FJM.The risk of transfer of foodborne bacterial hazards in Turkey through the consumption of meat; risk ranking of muscle foods with the potential to transfer Campylobacter spp. Food Secur. 2013;5:117-27.

  • 62. Pankhurst QA Connolly J Jones SK Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 2003;36:R167-R181.

  • 63. Park HS Ahn J Kwak HS. Effect of nano-calciumenriched milk on calcium metabolism in ovariectomized rats. J. Med. Food. 2008;11:454-9.

  • 64. Peng F Wang Z Zhang S Wu R Hu S Li Z Wang X Bi D. Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses. Clin. Vaccine Immunol. 2008;15:569-74.

  • 65. Petryayeva E Algar WR Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013;67:215-52.

  • 66. Ray PC Darbha GK Ray A Walker J Hardy W.Gold Nanoparticle Based FRET for DNA Detection. Plasmonics. 2007;2:173-83.

  • 67. Rosec JP Causse V Cruz B Rauzier J Carnat L. The international standard ISO/TS 21872-1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: ITS improvement by use of a chromogenic medium and PCR. Int. J. Food Microbiol. 2012;157:189-94.

  • 68. Rosi NL Mirkin CA. Nanostructures in biodiagnostics. Chem. Rev. 2005;105:1547-62.

  • 69. Ruedas-Rama MJ Walters JD Orte A Hall EAH. Fluorescent nanoparticles for intracellular sensing: a review. Anal. Chim. Acta. 2012;751:1-23.

  • 70. Shah M Badwaik V Kherde Y Waghwani HK Modi T Aguilar ZP Rodgers H Hamilton W Marutharaj T Webb C Lawrenz MB Dakshinamurthy R. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front. Biosci. Landmark Ed. 2014;19:1320-44.

  • 71. Shirahata N. Colloidal Si nanocrystals: a controlled organic-inorganic interface and its implications of color-tuning and chemical design toward sophisticated architectures. Phys. Chem. Chem. Phys. 2011;13:7284-94.

  • 72. Shokrollahi H. Structure synthetic methods magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:2476-87.

  • 73. Smolkova B El Yamani N Collins AR Gutleb AC Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem. Toxicol. 2015;77:64-73.

  • 74. Sperling RA Rivera Gil P Zhang F Zanella M Parak WJ. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008;37:1896-908.

  • 75. Syed MA Bokhari SHA. Gold Nanoparticle Based Microbial Detection and Identification. J. Biomed. Nanotechnol. 2011;7:229-37.

  • 76. Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens. Bioelectron. 2014;51:391-400.

  • 77. Tallury P Malhotra A Byrne LM Santra S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev. 2010;62:424-37.

  • 78. Tartaj P Morales M a del P Veintemillas-Verdaguer S Gonz lez-Carre o T Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 2003;36:R182-R197.

  • 79. Thakur MS Ragavan K V. Biosensors in food processing. J. Food Sci. Technol. 2013;50:625-41.

  • 80. Tuitemwong P Songvorawit N Tuitemwong K. Facile and Sensitive Epifluorescent Silica Nanoparticles for the Rapid Screening of EHEC. J. Nanomater. 2013; 2013:1-8.

  • 81. Varshney M Li Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 2007;22:2408-14.

  • 82. Vashist SK. Nanomaterials-Based Health Care and Bioanalytical Applications: Trend and Prospects. Nanomater. Mol. Nanotechnol. 2013;2:2.

  • 83. Wang L Ma W Xu L Chen W Zhu Y Xu C Kotov NA. Nanoparticle-based environmental sensors. Mater. Sci. Eng. R Reports 2010;70:265-74.

  • 84. Wang L Zhao W O’Donoghue MB Tan W. Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjug. Chem. 2007;18:297-301.

  • 85. Wingstrand A Neimann J Engberg J Nielsen EM Gerner-Smidt P Wegener HC Mølbak K. Fresh chicken as main risk factor for campylobacteriosis. Denmark. Emerg. Infect. Dis. 2006;12:280-5.

  • 86. Xu C Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2013;65:732-43.

  • 87. Yeh YC Creran B Rotello VM. Gold nanoparticles: preparation properties and applications in bionanotechnology. Nanoscale. 2012;4:1871-80.

  • 88. Yildirimer L Thanh NTK Loizidou M Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6:585-607.

  • 89. Yu KO Grabinski CM Schrand AM Murdock RC Wang W Gu B Schlager JJ HussainSM. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanoparticle Res. 2008;11:15-24.

  • 90. Zhang G. Foodborne Pathogenic Bacteria Detection: An Evaluation of Current and Developing Methods. The Meducator 2013.1.

  • 91. Zhang Y. Electrochemical DNA Biosensors Based on Gold Nanoparticles / Cysteamine / Poly(glutamic acid) Modified Electrode. Am. J. Biomed. Sci. 2007;115.

  • 92. Zhao X Hilliard LR Mechery SJ Wang Y Bagwe RP Jin S Tan W. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2004;101:15027-32.

  • 93. Zhao X Lin C-W Wang J Oh DH. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014;24:297-312.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 740 355 28
PDF Downloads 321 214 18