Impact of Moisture and Speed of Threshers on Efficiency of Crushing of Lupine Seeds

Sławomir Gawłowski 1 , Ryszard Kulighttp://orcid.org/https://orcid.org/0000-0003-0994-8140 2 , Grzegorz Łysiakhttp://orcid.org/https://orcid.org/0000-0002-4942-3050 3 , Al Aridhee Jawad Kadhim 4 , Zdybel Adam 5 , and Paweł Hyła 6
  • 1 Department of Food Engineering and Machines, University of Life Sciences in Lublin, Poland
  • 2 Department of Food Engineering and Machines, University of Life Sciences in Lublin, Poland
  • 3 Department of Food Engineering and Machines, University of Life Sciences in Lublin, Poland
  • 4 College of Agriculture, Al Muthanna University, Al Muthanna 66001, Iraq
  • 5 Department of Food Engineering and Machines, University of Life Sciences in Lublin, Poland
  • 6 Department of Food Engineering and Machines, University of Life Sciences in Lublin, Poland

Abstract

The objective of the paper was to determine the impact of moisture and rotational speed of threshers on the process of crushing of lupine seeds. Raw material was led to four levels of moisture from 8 to 14% every 2%. The studies were carried out on the laboratory hammer mill with the use of variable speeds of mill hammers within 5500-7000 rot∙min−1. The studies that were carried out proved significant relations (p<0.05) between the analysed process variables and energy consumption and susceptibility of seeds to crushing. It was stated that along with the increase of the rotational speed, a reduction in the drop of the average dimension of particles of mill takes place. Along with the increase of moisture of lupine from 8 to 14% a unit energy of crushing increases on average by approx. 83%. It was proved that the susceptibility ratio of seeds to crushing increases along with the increase of raw material moisture. Such relations were determined for all investigated rotational speeds of hammers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andrejko, D., Grochowicz, J. (1999). Warunki wykorzystania nasion łubinu jako wysokobiałkowego surowca paszowego (cz.1). Pasze Przemysłowe, 8. Warszawa.

  • Ball, M.E.E., Magowan E., McCracken, K.J., Beattie, V.E., Bradford, R., Thompson, A., Gordon, F.J. (2015). An investigation into the effect of dietary particle size and pelleting of diets for finishing pigs. Livestock Science, 173, 48-54.

  • Bartkiene, E., Pugajeva, I., Bartkevics, V., Zadeike, D., Juodeikiene, G. (2016). Reducing of acrylamide formation in wheat biscuits supplemented with flaxseed and lupine. LWT - Food Science and Technology, 65, 275-282.

  • Branland, G. (1997). La dureté des blés sélectionnés en France évolution et conséquences. Industries des Céréales 101, 5-10.

  • Bochat, A., Zastempowski, M. (2019). Wpływ konstrukcji rozdrabniacza bijakowego na skład granulometryczny rozdrabnianego materiału ziarnistego. Przemysł Chemiczny 98(9), 1499-1504.

  • Cruz-Chamorro, I., Álvarez-Sánchez, N., del CarmenMillán-Linares, M., del MarYust, M., Pedroche, J., Millán, F., Lardone, P.J., Carrera-Sánchez, C., MiguelGuerrero, J., Carrillo-Vico, A. (2019). Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Research International, 126.

  • Dziki, D. (2008). The crushing of wheat kernels and its consequence on the grinding process. Powder Technol. 185(2), 181-186.

  • Gimenoa, A., AlAlamia, A., Toralb, P.G., Frutosb, P., Abeciac, L., Fondevila, M., Castrillo, C. (2015). Effect of grinding or pelleting high grain maize-or barley-based concentrates on rumen environment and microbiota of beef cattle. Animal Feed Science and Technology, 203, 67-78.

  • Grochowicz, J., Andrejko, D. (1998). Obłuskiwanie nasion roślin strączkowych. Pasze Przemysłowe, 2.

  • Grudniewska, B. (1998). Hodowla i użytkowanie świń. Wyd. ART, Olsztyn.

  • Kalwaj, J. (2010). Zagadnienia energetyczne zespołu roboczego rozdrabniacza bijakowego do ziarna zbóż. Inżynieria i Aparatura Chemiczna, 5, 53-54.

  • Kulig, R., Laskowski, J. (2002). Określenie zależności między stopniem rozdrobnienia nasion roślin strączkowych a parametrami procesu granulowania. InżynieriaRolnicza, 7a, 155-163.

  • Lamp, A. E., Evans, A. M., Moritz, J. S. (2015). The effects of pelleting and glucanase supplementation in hulled barley based diets on feed manufacture, broiler performance, and digesta viscosity. J. Appl. Poult. Res., 2, 1-9.

  • Laskowski, J., Łysiak, G., (1999). Use of compression behaviour of legume seeds in view of impact grinding prediction. Powder Technol., 105, 83-88.

  • Laskowski, J., Łysiak, G., Skonecki, S. (2005). Mechanical properties of granular agro-materials and food powders for industrial practice. Part II. Material properties in grinding and agglomeration. Centre of Excellence for Applied Physics in Sustainable Agriculture AGROPHYSICS. Institute of Agrophysics PAS, Lublin, 159 ss.

  • López, E. P., Goldner, M. C. (2015). Influence of storage time for the acceptability of bread formulated with lupine protein isolate and added brea gum. LWT - Food Science and Technology, 64(2), 1171-1178.

  • Ma, X., Mason-Jones, K., Liu, Y., Blagodatskaya, E., Kuzyakov, Y., Guber, A., Dippold, M., Razavi, B. (2019). Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 135, 420-428.

  • Marks, N. (2010). Wpływ wilgotności na zużycie energii bezpośredniej w procesie rozdrabniania ziarna żyta i pszenżyta. Inżynieria Rolnicza, 7(125), 125-130.

  • Mayer-Laigle, C., Blanc, N., Rova, K., Rouau, X. (2018a). Comminution of Dry Lignocellulosic Bio-mass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering, 5(2), 41.

  • Mayer-Laigle, C., Rova, K., Blanc, N., Rouau, X. (2018b). Comminution of Dry Lignocellulosic Bio-mass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering, 5(3), 334-358.

  • Olkowski, B. (2018). Feeding high lupine based diets for broiler chickens: Effect of soybean meal substitution with yellow lupine meal at various time points of growth cycle. Livestock Science, 218, 114-118.

  • Pabis, S., Jayas, D.S., Cenkowski, S. (1998). Grain Drying Theory and Practice. John Wiley and Sons, NewYork.

  • Posner, E. S. (1991). Wheat and flour ash as a measurement of millability. Cereal Food World, 36(8), 626-629.

  • PN-89/R-64798 - 1989. Pasze - oznaczanie stopnia rozdrobnienia.

  • PN-91/A-74010. Ziarno zbóż i przetwory zbożowe. Oznaczanie wilgotności.

  • Roszak, W., (1999). Technologie produkcji roślinnej. PWRiL, Warszawa. 78-139.

  • Wandersleben, T., Morales, E., Burgos-Díaz, C., Barahona, T., Labra, E., Rubilar, M., Salvo-Garrido, H., (2018). Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT - Food Science and Technology, 91, 48-54.

  • Volek, Z., Bures, D., Uhlirova, L. (2018). Effect of dietary dehulled white lupine seed supplementation on the growth, carcass traits and chemical, physical, and sensory meat quality parameters of growing-fattening rabbits. Meat Science, 141, 50-56.

  • Zduńczyk, Z., Mikulski, B., Jankowski, B., Przybylska-Gornowicz, J., Juśkiewicz, A. (2019). Gastrointestinal response of laying hens to graded dietary inclusion levels of yellow lupine seeds. Animal Feed Science and Technology, 255, 112-124.

OPEN ACCESS

Journal + Issues

Search