Prediction of Pre-Compression Stress of Soil with Uniaxial Test

Open access

Abstract

The paper presents a concept of determination of pre-compression stress. It assumes that the stress value is close to the unit pressure value which is indispensable to increase the initial degree of soil compaction. Thus, an attempt was made to develop an empirical model for predicting the value of stress at which the initial compaction of a soil sample increases by a determined value. Samples with the so-called intact structure (NS) and soil material in the form of loose mass were collected from subsoil, and they were used to form model samples. Both types of samples were uniaxially compressed. For the study, data on moisture and dry bulk density of model samples were used, as well as determined ratios (conversion factors) that present relations between the results of compaction of model samples and samples with the intact structure. It was reported that the pressure necessary for the increase of the initial compaction of the model samples with the value of +0.05 or +0.10 g∙cm−3 were higher than the formation pressure respectively by 1.03-1.11 and 1.42-1.93 times. It was proved that for determination of the pre-compression stress of the NS samples models of linear regression for prediction the pressure needed to increase the initial compaction of the model sample by the value of +0.05 g∙cm−3, combined with a coefficient calculated for the present state of the soil properties, can be applied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aragón A. García M.G. Filgueira R.R. Pachepsky Ya.A. (2000). Maximum compactibility of Argentine soils from the Proctor test; The relationship with organic carbon and water content. Soil & Tillage Research 56 197-204.

  • Błażejczak D. (2010). Prognozowanie naprężenia granicznego w warstwie podornej gleb ugniatanych kołami pojazdów rolniczych. Wyd. ZUT w Szczecinie. ISBN 978-83-7663-050-2.

  • Błażejczak D. Śnieg K. Słowik M. (2018). Comparison of Proctor and uniaxial compression tests for selected soils. Agricultural EngineeringVol. 22 No 1 5-13 DOI: 10.1515/agriceng-2018-0001.

  • Błażejczak D. Dawidowski J.B. (2013). Problem wykorzystania gęstości objętościowej gleby w ocenie jej zagęszczenia. Journal of Research and Applications in Agricultural EngineeringVol. 58(1) 17-20.

  • Filipovic D. Kovacev I. Copec K. Fabijanic G. Kosutic S. Husnjak S. (2016). Effect of tractor bias-ply tyre inflation pressure on stress distribution in silty loam soil. Soil & Water Reseach11 (3) 190-195.

  • Horn R. Fleige H. (2003). A method for assesing the impact of load on mechanical stability and on physical properties of soils. Soil & Tillage Research 73 89-99.

  • Horn R. Lebert M. (1994). Soil Compactability and Compressibility. In: Soil Compaction in Crop Production Soane B.D. and Ouwerkerk (Eds.) Elsevier Science B.V. 45-66. ISBN: 9780444882868.

  • Jurga J. (2009). The verification of mathematical model designed to determining the area of the contact surface as well as unit pressure exerted onto soil by wheels of the agricultural vehicles. Journal of Research and Applications in Agricultural Engineering Vol. 54(1) 83-88.

  • Komornicki T. Zasoński S. (1965). Powtarzalność wyników oznaczeń niektórych właściwości fizycznych gleb. Roczniki Gleboznawcze T. XV z. 2. PWN Warszawa 315-330.

  • Krasowicz S. Oleszek W. Horabik J. Dębicki R. Jankowiak J. Stuczyński T. Jadczyszyn J. (2011). Racjonalne gospodarowanie środowiskiem glebowym Polski. Polish Journal of Agronomy7 43-58.

  • Kumar D. Bansal M. L. Phogat V. K. (2009). Compactability in relation to texture and organic matter content of alluvial soils. Indian Journal of Agricultural Research43(3) 180-186.

  • Nawaz M. F. Bourrié G. Trolard F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development 33 291-309.

  • Nhantumbo A. B. J. C. Cambule A. H. (2006). Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil & Tillage Research 87 231-239.

  • PN-88/B-04481 (1988). Grunty budowlane. Badania próbek gruntu.

  • Polskie Towarzystwo Gleboznawcze (2009). Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze60(2) 5-16.

  • Pytka J. (2005): Effects of repeated rolling of agricultural tractors on soil stress and deformation state in sand and loess. Soil & Tillage Research82 77-88.

  • Szeptycki A. (2003). Wpływ ciężkich maszyn rolniczych na fizykomechaniczne właściwości gleby. Journal of Research and Application in Agricultural EngineeringVol. 48(3) 5-9.

  • Śnieg K. Błażejczak D. (2017). Evaluation of subsoil compaction of plastic soils. Agricultural Engineer-ingVol 21 No 1 85-94.

  • Śnieg K. Błażejczak D. Słowik M. (2018). Predicting unit pressure indispendable for generation of specific compaction of a soil sample. Agricultural EngineeringVol 22 No 3 85-92 DOI: 10.1515/agriceng-2018-0030.

  • Tarkiewicz S. Nosalewicz A. (2005). Effect of organic carbon content on the compactibility and penetration resistance of two soils formed from loess. International Agrophysics19 345-350.

  • Van den Akker J. J. H. Arvidsson J. Horn R. (2003). Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union. Soil & Till-age Research73 1-8.

  • Wagner L. E. Ambe N. M. Ding D. (1994). Estimating a Proctor Density Curve from Intrinsic Soil Properties. Transactions of the ASAE Vol. 37(4) 1121-1125.

  • Walczyk M. (1995). Wybrane techniczne i technologiczne aspekty ugniatania gleb rolniczych agregatami ciągnikowymi. Zeszyty Naukowe Akademii Rolniczej w Krakowie Rozpr. 202 ISSN 1233-4189.

  • Wojtasik M. (1995). Gęstość naturalna gleb mineralnych. Wydawnictwo Uczelniane WSP Bydgoszcz pp. 120. ISBN 83-7096-076-6.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 5
PDF Downloads 64 64 4