Optimisation of Osmotic Dehydration of Plums


The paper presents kinetics of osmotic dehydration of plums in relation to the treatment time and concentration of sucrose solution. The main aim of the study was polyoptimisation of the preservation process, namely selection of optimal parameters of osmotic dehydration processes including changes in selected quality indicators. Defining of optimal conditions of the entire course of preservation may influence limitation of consumption of preserving substances (osmotic substances) and reduction of the energy demand. Based on the research which was carried out, it was found that parameters of osmotic dehydration had a significant impact on mass transfer coefficients and physico-chemical indicators of fruit - along with the increase of concentration of osmotic solution and extension of the time of the process, the increase of the investigated sizes was observed. In the second part of the paper, optimization of the fruit preservation process was performed. The idea of the objective function consisted in minimization of the difference between the expected values of criteria and the values obtained from the experimental results. For the defined scalar optimization criterion an explicit relation between quality and cost of the product was showed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barat, J.M., Chiralt, A., Fito, P. (1998). Equilibrium in cellular food osmotic solution systems as related to structure. Journal of Food Science, 63(5), 836-840.

  • Barat, J.M., Chiralt, A., Fito, P. (2001). Modelling of simultaneous mass transfer and structural changes in fruit tissues. Journal of Food Engineering, 49(2/3), 77-85.

  • Bartosik, P., Plawgo, A., Kukiełka, L. (2011). Optymalizacja statyczna procesu odwadniania osmotycznego i przechowywania truskawek. Inżynieria Rolnicza, 5(130), 15-21.

  • Bekele, Y., Ramaswamy, H. (2010). Going beyond conventional osmotic dehydration for quality advantage and energy savings. Etiophian Journal of Applied Science and Technology, 1(1), 1-15.

  • Escriche, I., Chiralt, A., Moreno, J., Serra, J.A. (2000). Influence of blanching-osmotic dehydration treatments on volatile fraction of strawberries. Journal of Food Science, 65, 107.

  • Gruda, Z., Postolski, J. (1999). Zamrażanie Żywności. WNT, Warszawa. ISBN 83-204-2332-5

  • Kowalska, H., Lenart, A. (2001). Mass exchange during osmotic pre-treatment of vegetables. Journal of Food Engineering, 49(2/3), 137-140.

  • Kowalska, H. (2009). Wpływ stężenia roztworu, temperatury i czasu procesu na odwadnianie osmotyczne jabłek. Żywność. Nauka. Technologia. Jakość, 1(62), 73-85.

  • Kowalska, H. (2006). Kinetyka osmotycznego odwadniania dyni. Żywność. Nauka. Technologia. Jakość, 2(47), 135-142.

  • Lazarides, H.N., Katsanidis, E., Nickolaidis, A. (1995). Mass transfer kinetics during osmotic preconcentration aiming at minimal solid uptake. Journal of Food Engineering, 25, 151-166.

  • Matusek, A., Meresz, P. (2002). Modelling of sugar transfer during osmotic dehydration of carrots. Periodica Polytechnica. Chemical Engineering, 1(2), 83-92.

  • Mayor, L., Moreira, R., Chenlo, F., Sereno, A.M. (2006). Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions, Journal of Food Engineering, 74(2), 253-262.

  • Panagiotou, N.M., Karathanos, V.T., Maroulis, Z.B. (1999). Effect of osmotic agent on osmotic dehydration of fruits. Drying Technology, 17, 175-189.

  • Plawgo, A., Szparaga, Ł., Bartosik, P., Kubiak, M. S. (2009). Static optimization of osmotic dehydration and storage process of previously frozen plums. [w]: Food Technology Opertaions. New Vistas. Red. W. Kopeć i M. Korzeniowska. Wyd. Uniwersytetu Przyrodniczego, Wrocław, 233–241.

  • Rahman, M.S., Perera, C.O. (2007). Drying and food preservation. W: Handbook of food preservation. Red. M.S. Rahman, CRC Press, USA, 412.

  • Rastogi, N.K., Raghavarao, K.S.M.S., Niranjan, K., Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science Technology, 2(13), 48-59.

  • Rastogi, N.K., Raghavarao, K. (2004). Mass transfer during osmotic dehydration of pineapple: consideringFickian diffusion in cubical configuration. Food Science and Technology, 37, 43-47.

  • Sereno, A.M., Moreira, R., Martinez, E. (2001). Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous solutions of sugar and salt. Journal of Food Engineering, 47(1), 43-49.

  • Shi, J. (2008). Osmotic dehydration of foods. W: Food Drying Science and Technology: Microbiology, Chemistry, Applications. Red. Y.H. Hui, C. Clary, M.M. Farid, O.O. Fasina, A. Noomhorm, J. Welti-Chanes. DEStech Publications, Pennsylvania, U.S.A, 275-295.

  • Soliva-Fortuny, R.C., Belloso, O.M. (2003). New advances in extending the shelf-life of fresh-cut fruits: a review. Trends in Food Science Technology, 14, 341-353.

  • Tarnowski, W. (2011). Optymalizacja i polioptymalizacja w technice. Wyd. Uczelniane Politechniki Koszalińskiej, Koszalin, ISBN 978-83-7365-273-6


Journal + Issues