Spectrometric Determination of Content of Methyl Palmitate in Methyl Esters of Waste Cooking Oils

Open access


The second-generation liquid biofuels are fuels derived from non-food raw materials, i.e. waste cooking oils and animal fats. They are waste raw materials from the agri-food industry, hence their quantity is limited, and their quality depends, inter alia, on the place of their acquisition. Considering the fact that rheological properties of liquid biofuels are closely correlated with the quality of raw materials from which they are obtained, the industrial production of biofuels from waste fats requires development of new analytical methods, allowing for a quick assessment of the quality of the obtained products. The aim of the study was to confirm the possibility of using near infrared spectrometry to assess the content of methyl palmitate in biofuels produced from waste cooking oil. The calibration models were based on 41 absorbance spectra recorded in the range of 400-2170 nm for samples containing from 0 to 5 % of methyl palmitate. The obtained results confirmed that there is a possibility of effective detection of the concentration of this ester in biofuel using the spectrum in the range of 1644-1778 nm. The developed PLS calibration models are characterized by a determination co-efficient (R2) exceeding the value of 0.99.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • CAMO (2015). The Unscrambler meyhod reference. Available at: http://www.camo.com/helpdocs/The_Unscrambler_Method_References.pdf.

  • Çelikten İ. Koca A. Ali Arslan M. (2010). Comparison of performance and emissions of diesel fuel rapeseed and soybean oil methyl esters injected at different pressures Renewable Energy. Pergamon 35(4) 814-820.

  • Czechlowski M. Marcinkowski D. Golimowska R. Berger W. A. Golimowski W. (2019). Spectroscopy approach to methanol detection in waste fat methyl esters Spectrochimica Acta -Part A: Molecular and Biomolecular Spectroscopy. 210 14-20.

  • Freedman B. Pryde E. H. Mounts T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils Journal of the American Oil Chemists’ Society. John Wiley & Sons Ltd 61(10) 1638-1643.

  • Gao Y. Chen Y. Gu J. Xin Z. Sun S. (2019). Butyl-biodiesel production from waste cooking oil: Kinetics fuel properties and emission performance Fuel 1489-1495.

  • García-Martín J. F. Alés-Álvarez F. J. López-Barrera M. C. Martín-Domínguez I. Álvarez-Mateos P. (2019). Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy Fuel 240 10-15.

  • Golimowski W. Marcinkowski D. Gracz W. Konieczny R. Poczta O. Czechlowski M. Krzaczek P. Piekarski W. (2017). Oznaczanie zawartości palmitynianu metylu w estrach metylowych kwasów tłuszczowych z wykorzystaniem spektroskopii bliskiej podczerwieni Przemysł Chemiczny1(12) 148-152.

  • Lang X. Dalai A. K. Bakhshi N. N. Reaney M. J. Hertz P. B. (2001). Preparation and characterization of bio-diesels from various bio-oil Bioresource Technology. Elsevier 80(1) 53-62.

  • Liu X. Paio X. Wang Y. Zhu S. He H. (2008). ‘Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol’ Fuel. Elsevier 87(7) 1076-1082.

  • Nejad A. S. Zahedi A. R. (2018). Optimization of biodiesel production as a clean fuel for thermal power plants using renewable energy source Renewable Energy. Pergamon 119 365-374.

  • Nigam P. S. Singh A. (2011). Production of liquid biofuels from renewable resources Progress in Energy and Combustion Science. Pergamon 37(1) 52-68.

  • Paul A.; Bräuer B. Nieuwenkamp G. Ent H. Bremser W. (2016). A validated near-infrared spectroscopic method for methanol detection in biodiesel Measurement Science and Technology 27(6) 1-9.

  • Sajjadi B. Raman A. A. A. Arandiyan H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition specifications and prediction models Renewable and Sustainable Energy Reviews. Pergamon 63 62-92.

  • Sander A. Koscak M. A. Kosir D. Milosavljević N. Vuković J. P. Magić L. (2018). The influence of animal fat type and purification conditions on biodiesel quality Renewable Energy. Pergamon 118 752-760.

  • Schale S. P. Le T. M. Pierce K. M. (2012). Predicting feedstock and percent composition for blends of biodiesel with conventional diesel using chemometrics and gas chromatography–mass spectrometry Talanta94 320-327.

  • Semwal S. Arora A. K. Badoni R. P. Tuli D. K. et al. (2011). Biodiesel production using heterogeneous catalysts Bioresource Technology 102(3) 2151-2161.

  • da Silva N. C. Calvanti C. J. Honorato F. A. Amigo J. M. Pimentel M. F. (2017). Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters Analytica Chimica Acta954 32-42.

  • Silva V. L. O. Melo J. A. Oliveira L. B. Pedroso L. R. Simionatto E. L. de Mantos D. I. Scharf. D. R. Figueiredo E. S. Wisniewski Jr. A. (2019). Esters from frying oil sewage scum and domestic fat trap residue for potential use as biodiesel Renewable Energy135 945-950.

  • Xu Y.-J. Li G.-X. Sun Z.-Y. (2016). Development of biodiesel industry in China: Upon the terms of production and consumption Renewable and Sustainable Energy Reviews54 318-330.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 4
PDF Downloads 70 70 7