Effect of the Fertilizer Application Method on Soil Abundance in Available Sulfur

Open access

Abstract

Efficient increase in the content of available forms of elements in soil depends not only on their total content introduced to soil material, but also on the technology of its application. Technology consists of techniques and date of application as well as agronomic practices aimed at maintaining proper conditions for element transformations. The method of application of waste elemental sulfur and ground phosphate rock was assessed. Doses of 20 and 40 mg S as well as 40 and 80 mg P·kg−1d.m. were added to medium soil; 30 and 60 mg S as well as 60 and 120 mg P·kg−1d.m. were added to heavy soil. The soil samples were collected on the day of application of materials and after 15, 30, 60 and 90 days. The soil pH value decreased during the incubation. An increase in available sulfur content was observed in both soils after elemental sulfur application; the sulfur content in the medium soil depended on the dose of waste. The soils with the addition of a double dose of ground phosphate rock had the highest content of available phosphorus.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bobowiec A. Tabak M. (2018). The effect of waste sulfur obtained during biogas desulfurization on the availability of selected trace elements in soil. Geology Geophysics & Environment44(4) 345-355.

  • Boreczek B. (2001). Bilans siarki w uprawach wybranych roslin polowych. Fragmenta Agronomica4 118-135.

  • Borek K. Barwicki J. Mazur K. Majchrzak M. Wardal W.J. (2015). Evaluation of the impact of digestate formed during biogas production on the content of heavy metals in soil. Agricultural Engineering2(154) 15-23.

  • Borusiewicz A. Kapela K. Drożyner P. Marczuk T. (2016). Application of precision agriculture technology in Podlaskie Voivodeship. Agricultural Engineering 20(1) 5-11.

  • Caputo M.C. De Girolamo A.M. Volpe A. (2013). Soil amendment with olive mill wastes: Impact on groundwater. Journal of Environmental Management131 216-221.

  • Evans J. McDonald L. Price A. (2006). Application of reactive phosphate rock and sulphur fertilisers to enhance the availability of soil phosphate in organic farming. Nutrient Cycling in Agroecosystems 75(1-3) 233-246.

  • Glæsner N. van der Bom F. Bruun S. McLaren T. Larsen F.H. Magid J. (2019). Phosphorus characterization and plant availability in soil profiles after long-term urban waste application. Geoderma338 136-144.

  • Hoffmann J. Skut J. Zmuda J. (2014). Badanie zawartości wybranych form fosforu w częściowo rozłożonych fosforytach wzbogaconych w siarkę. Proceedings of ECOpole8(2) 513-518.

  • Ivanov K. Zaprjanova P. Petkova M. Stefanova V. Kmetov V. Georgieva D. Angelova V. (2012). Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils. Spectrochimica Acta Part B 71-72 117-122.

  • Jazaeri M. Akhgar A. Sarcheshmehpour M. Mohammadi A.H. (2016). Bioresource efficacy of phosphate rock sulfur and Thiobacillus inoculum in improving soil phosphorus availability. Communications in Soil Science and Plant Analysis 47(11) 1441-1450.

  • Kabata-Pendias A. Piotrowska M. Motowicka-Terelak T. Maliszewska-Kordybach B. Filipiak K. Krakowiak A. Pietruch Cz. (1995). Podstawy oceny chemicznego zanieczyszczenia gleb. Metale ciężkie siarka i WWA. PIOŚ IUNG Warszawa ISBN 83-86676-35-3.

  • Kaczor A. Zuzańska J. (2009). Znaczenie siarki w rolnictwie. Chemia Dydaktyka Ekologia Metrologia 14(1-2) 69-78.

  • Kulczycki G. (2015). Wpływ nawożenia siarką elementarną na plon roślin i właściwości gleb. UP we Wrocławiu Wrocław ISBN 978-83-7717-197-4.

  • Monitoring chemizmu gleb ornych Polski. Pozyskano z: http://www.gios.gov.pl/chemizm_gleb/index.php?mod=wyniki (10.12.2018)

  • McNeill A.M. Eriksen J. Bergstro L. Smith K.A. Marstorp H. Kirchmann H. Nilsson I. (2015). Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems. Soil Use and Management 21 82-93.

  • Environment 2008. (2008). Central Statistical Office (GUS) Warsaw ISSN 0867-3217.

  • Environment 2018. (2018). Statistics Poland (GUS) Warsaw ISSN 0867-3217.

  • Ostrowska A. Gawliński S. Szczubiałka Z. (1991). Metody analizy i oceny właściwości gleb i roślin. Katalog. IOŚ Warszawa.

  • Rafael R.B.A. Fernández-Marcos M.L. Cocco S. Ruello M.L. Weindorf D.C. Cardelli V. Corti G. (2018). Assessment of potential nutrient release from phosphate rock and dolostone for application in acid soils. Pedosphere28(1) 44-58.

  • Stanisławska-Glubiak E. Korzeniowska J. Hoffmann J. Górecka H. (2015). Porównanie pylistej i granulowanej postaci nawozu fosforowo-siarkowego wytworzonego na bazie mielonego fosforytu w aspekcie wpływu na środowisko. Przemysł Chemiczny94(3) 408-411.

  • Stanisławska-Glubiak E. Korzeniowska J. Hoffmann J. Kantek K. (2012). Zwiększenie efektywności surowców fosforytowych poprzez dodatek siarki. Cz. 2 Wpływ nawozów fosforytowosiarkowych na środowisko. Przemysł Chemiczny 91(5) 1000-1005.

  • Tur-Cardona J. Bonnichsen O. Speelman S. Verspecht A. Carpentier L. Debruyne L. Marchand F. Jacobsen B.H. Buysse J. (2018). Farmers’ reasons to accept bio-based fertilizers: A choice experiment in seven different European countries. Journal of Cleaner Production 197(1) 406-416.

  • Wróbel M. Frączek J. Jewiarz M. Mudryk K. Dziedzic K. (2016). Impact of selected properties of raw material on quality features of granular fertilizers obtained from digestates and ash mixtures. Agricultural Engineering20(4) 207-217.

  • Vega F. Alonso-Fariñas B. Baena-Moreno F.M. Rodriguez J.A. Navarette B. (2018). New trends in coal conversion. Combustion gasification emissions and coking. Woodhead Publishing ISBN 9780081022016.

  • Yang Z.H. Stöven K. Haneklaus S. Singh B.R. Schnug E. (2010). Elemental sulfur oxidation by Thiobacillus spp. and aerobic heeterotrophic sulfur-oxidizing bacteria. Pesdosphere20(1) 71-79.

  • Zhu Z. Zhang F. Wang Ch. Ran W. Shen Q. (2013). Treating fermentative residues as liquid fertilizer and its efficacy on the tomato growth. Scientia Horticulturae164 492-498.

  • Żarczyński A. Rosiak K. Anielak P. Ziemiński K. Wolf W. (2015). Praktyczne metody usuwania siarkowodoru z biogazu. II Zastosowanie roztworów sorpcyjnych i metod biologicznych. Acta Innovations 15 57-71.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 118 7
PDF Downloads 135 97 8