Concepts and Methods of Mathematical Modelling of Plant Growth and Development. Plant Germination – Part II

Open access

Abstract

Interdisciplinary nature of scientific research with regard to agriculture caused a development of mathematical modelling with regard to plant growth and development. Application of mathematical sciences in agriculture suits well the area of agricultural engineering which covers the issues related to inter alia, application of mathematical sciences. This article presents mathematical models, in which the analysed system is described with mathematical formulas. The objective of the paper was to present the current state of knowledge on mathematical methods in description and prediction of plant germination. Possibilities of the use of mathematical models and new challenges occurring in the description of plant germination were presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aggarwal P.K. (1993). Agro-ecological zoning using crop growth simulation models: characterization of wheat environments in India. F.W.T. Penning de Vries P. Teng K. Metselaar (Eds.) Systems approaches for sustainable agricultural development Kluwer Academic Publishers Dordrecht The Netherlis 97-109.

  • Aggarwal P.K. Kalra N. (1994). Analyzing the limitations set by climatic factors genotype and water and nitrogen availability on productivity of wheat II. Climatically potential yields and management strategies. Field Crops Research 38 93-103.

  • Angus J.F. Cunningham R.B. Moncur M.W. Mackenzie D.H. (1981). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research 3 365-378.

  • Benech Arnold R.L. Ghersa C.M. Sanchez R.A. Insausti P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research 30 91-99.

  • Berge N. Samaan M. Juanole G. Atamna J. (1994). Methodology for LAN modelling and analysis using Petri net based models. Proc. Int. Workshop on Modelling Analysis and Simulation in Telecommunication Systems Durham NC 269-275.

  • Bouman B.A.M. van Keulen H. van Laar H.H. Rabbinge R. (1996). The school of de Wit crop growth simulation models: a pedigree and historical overview Agricultural Systems 52(2/3) 171-198.

  • Boydston R.A. (1989). Germination and emergence of longspine sibur (Cenchrus longispinus). Weed Science 37 63-67.

  • Bradford K.J. (1995). Water relations in seed germination. In: Kigel J. Galili G. (Eds.) Seed Development i Germination. Marcel Dekker New York pp. 351-396.

  • Brown R.F. Mayer D.G. (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany 61 127-138.

  • Carberry P.S. Campbell L.C. (1989). Temperature parameters useful for modeling the germination and emergence of pearl millet. Crop Science 29 220-223.

  • Carberry P.S. Muchow R.C. McCown R.L. (1993). A simulation model of kenaf for assisting fibre industry planning in northern Australia. IV. Analysis of climatic risk. Australian Journal of Agricultural Research44 713-730.

  • Cieśla A. Kraszewski W. Skowron M. Syrek P. (2015). Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrotechniczny 91(1) 125-128.

  • Colbach N. Debaeke P. (1998). Integrating crop management and crop rotation effects into models of weed population dynamics: a review. Weed Science 46 717-728.

  • Colbach N. Dürr C. Roger-Estrade J. Caneill J. (2005). How to model the effects of farming practices on weed emergence. Weed Research 45 2-17.

  • Cousens R. Moss S.R. (1990). A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Research 30 61-70.

  • Cussans G.W. Raudonius S. Brain P. Cumberworth S. (1996). Effects of depth of seed burial and soil aggregate size on seedling emergence of Alopecurus myosuroides Galiumaparine Stellaria media i wheat (Triticum aestivum). Weed Research 36 133-142.

  • Evans E.J. Ludeke F. (1987). Effect of sowing date on the flower and pod development of four winter oilseed rape cultivars. Annals of Applied Biology 110 170-171.

  • Fidanza M. Dernoeden P.H. Zhang M. (1996). Degree-days for predicting smooth crabgrass emergence in cool-season turf. Crop Science 36 990-996.

  • Forcella F. (1993). Seedling emergence model for velvetleaf. Agronomy Journal 85 929-933.

  • Forcella F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research 8 201-209.

  • Forcella F. Benech-Arnold R.L. Sánchez R.A. Ghersa C.M. (2000). Modeling seedling emergence. Field Crops Research 67 123-139.

  • Forcella F. Durgan B.R. Buhler D.D. (1996). Management of weed seedbanks. In: Streibig J. (Ed.) Proceedings of the Second International Weed Control Congress. International Weed Science Society Copenhagen 21-26.

  • Francik S. Ślipek Z. Frączek J. Knapczyk A. (2016). Present trends in research on application of artificial neural networks in agricultural engineering. Agricultural Engineering 20(4) 15-25.

  • Fyfield T.P. Gregory P.J. (1989). Effects of temperature and water potential on germination radicle elongation and emergence of mungbean. Journal of Experimental Botany 40 667-674.

  • Grundy A.C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research 43 1-11.

  • Grundy A.C. Mead A. Bond W. (1996). Modelling the effects of weed-seed distribution in the soil profile on seedling emergence. Weed Research 36 375-384.

  • Gummerson R.J. (1986). The effect of constant temperatures and osmotic potential on the germination of sugar beet. Journal of Experimental Botany 37 729-741.

  • Habekotté B. (1997). A model of the phenological development of winter oilseed rape. Field Crops Research 54 127-136.

  • Hodges T. Ritchie J.T. (1991). The CERES-Wheat Phenology Model. Hodges T. (Ed.) Predicting Crop Phenology CRC Press Boston.

  • Hodgson A.S. (1978). Rapeseed adaptation in Northern New South Wales. II. Predicting plant development of Brassica campestris L. and Brassica napus L. and its implications for planting time designed to avoid water deficit and frost. Australian Journal of Agricultural Research 29 711-726.

  • Jakubowski T. (2011). Model plonowania roślin ziemniaka (Solanum tuberosum L.) wyrosłych z sadzeniaków napromienionych mikrofalami. Acta Agrophysica 17(2) 311-323.

  • Keating B.A. McCown R.L. Wafula B.M. (1993). Adjustment of nitrogen inputs in response to a seasonal forecast in a region of high climatic risk. F.W.T. Penning de Vries P. Teng K. Metselaar (Eds.) Systems approaches for sustainable agricultural development Kluwer Academic Publishers Dordrecht The Netherlis.

  • Kremer E. Lotz L.A. (1998). Germination and emergence characteristics of triazine-susceptible and triazine-resistant biotypes of Solanum nigrum. Journal of Applied Ecology 35 302-310.

  • Michałek R. (2008). Przyszłość inżynierii rolniczej jako nauki i kierunku kształcenia. Inżynieria Rolnicza 1(99) 297-302.

  • Miglietta F. (1992). Simulation of wheat ontogenesis. Ph.D. Thesis Agricultural University Wageningen i Accademia deiGeorgofili Italy.

  • Myers L.F. Christian K.R. Kirchner R.J. (1982). Flowering responses of 48 lines of oilseed rape (Brassica spp.) to vernalization i daylenth. Australian Journal of Agricultural Research 33 927-936.

  • Oryokot J.O.E. Murphy D.D. Thomas A.G. Swanton C.J. (1997). Temperature- and moisterdependent models of seed germination and shoot elongation in green and redroot pigweed (Amaranthus powelliiA. retroflexus). Weed Science 45 488-496.

  • Ritchie J.T. (1993). Genetic specific data for crop modeling F. Penning de Vries P. Teng K. Metselaar (Eds.) Systems Approaches for Agricultural Development Kluwer Academic Press Boston. 77-93.

  • Roberts E.H. Summerfield R.J. (1987). Measurements i prediction of flowering in annual crops. Atherton J.G. (Ed.) Manipulation of Flowering Butterworth London.

  • Roman E.S. Murphy S.D. Swanton C.J. (2000). Simulation of Chenopodium album seedling emergence. Weed Science 48 217-224.

  • Roman E.S. Thomas A.G. Murphy S.D. Swanton C.J. (1999). Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science 47 149-155.

  • Rötter R. Dreiser C. (1994). Extrapolation of maize fertiliser trial results by using crop-growth simulation: results for Murang'a District Kenya. L.O. Fresco L. Stroosnijder J. Bouma H. van Keulen (Eds.). The future of the li: mobilising and integrating knowledge for li use options John Wiley & Sons Ltd West Sussex UK.

  • Ungar E.D. (1990). Management of agropastoral systems in a semiarid region Simulation Monographs. PUDOC Wageningen The Netherlis.

  • Weir A.H. Braggs P.L. Porter J.R. Rayner J.H. (1984). A winter wheat crop simulation model without water or nutrient limitations. The Journal of Agricultural Science 102 371-382.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 79 5
PDF Downloads 161 97 9