Concepts and Methods of Mathematic Modelling of Plant Growth and Development. Plant Germination -Part I

Open access


Contemporary agricultural engineering searches for “safe” methods of raising crop yields, using a combination of knowledge from a number of sciences. Thus, computer modelling of plant growth and development fits this range, because it has become an area of interdisciplinary research. Presentation of knowledge in the form of mathematical computer models is one of paradigms of agricultural production systems based on the scientific and practical knowledge and information. In the scientific activity concerning agricultural engineering research tasks related to mathematical modelling of agrobiological processes have been carried out for many years. Additionally, the use of modern forecasting techniques in agriculture may bring real financial advantages with regard to the fact that based on crop yield prediction estimation of their cultivation profitability is possible. Dynamic and continuous progress of computer and informative technologies creates new opportunities showing thus growth directions of agricultural engineering. Taking this into consideration, it should be emphasised that mathematical modelling constitutes a support for decision processes which take place in agricultural production. This article discusses mathematical models, where the analysed system is described with the use of mathematical formulas. The objective of the paper was to present the current state of knowledge on mathematical methods in describing and predicting seeds germination. Possibilities of their use and new challenges which occur in the description of seeds germination were presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aggarwal P.K. (1993). Agro-ecological zoning using crop growth simulation models: characterization of wheat environments in India. F.W.T. Penning de Vries P. Teng K. Metselaar (Eds.) Systems approaches for sustainable agricultural development Kluwer Academic Publishers Dordrecht The Netherlis 97-109.

  • Allen P.S. (2003). When i how many? Hydrothermal models and the prediction of seed germination. New Phytologist 158 1-9.

  • Alvarado V Bradford K.J. (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell & Environment 25 1061-1069.

  • Baskin C.C Baskin J.M. (1998). Seeds – ecology biogeography and evolution of dormancy and germination. San Diego CA USA: Academic Press.

  • Batlla D Kruk BC Benech-Arnold RL. (2004). Modelling changes in dormancy in weed soil seed banks: Implications for the prediction of weed emergence. In: Benech-Arnold RL Sanchez RA eds. Hibook of seed physiology: applications to agriculture. New York NY USA: Food Product Press i the Haworth Reference Press 245-270.

  • Bauer M.C. Meyer S.E. Allen P.S. (1998). A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. Journal of Experimental Botany 49 1235-1244.

  • Benech Arnold R.L. Ghersa C.M. Sanchez R.A. Insausti P. (1990). A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Research 30 91-99.

  • Berry G.J. Cawood R.J. Flood R.G. (1988). Curve fitting of germination data using the Richards function. Plant Cell & Environment 11 183–188.

  • Bewley J.D. Black M. (1994). Seeds. Germination Structure and Composition. Springer Science+ Business Media LLC New York.

  • Białobrzeski I. Markowski M. Bowszys J. Myhan R. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza 8(68) 23-30.

  • Birch C.P.D. (1999). A New Generalized Logistic Sigmoid Growth Equation Compared with the Richards Growth Equation. Annals of Botany 83 713-723.

  • Boniecki P. Niżewski P. (2010). Modelowanie neuronowe w rozwiązywaniu wybranych problemów predykcyjnych inżynierii rolniczej. Journal of Research i Applications in Agricultural Engineering 55(1) 16-19.

  • Bradford K.J. (1995). Water relations in seed germination. In: Kigel J. Galili G. (Eds.) Seed Development i Germination. Marcel Dekker New York pp. 351-396.

  • Cieśla A. Kraszewski W. Skowron M. Syrek P. (2015). Wpływ działania pola magnetycznego na kiełkowanie nasion. Przegląd Elektrotechniczny 91(1) 125-128

  • Daws M.I. Crabtree L.M. Dalling J.W. Mullins C.E. Burslem D. (2008). Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany 102 945-951.

  • De Wit C.T. (1982). Simulation of living systems. In Simulation of plant growth and crop production ed. F. W. T. Penning de Vries & H. H. van Laar. Simulation Monographs PUDOC Wageningen The Netherlis. pp. 3-8.

  • Dingkuhn M. Penning De Vries F.W.T. Miezan K.M. (1993). Improvement of rice plant type concepts: systems research enables interaction of physiology i breeding. In: Penning de Vries F. Teng P. Metselaar K. (eds) Systems approaches for agricultural development. Systems Approaches for Sustainable Agricultural Development vol 2. Springer Dordrecht

  • Donald C.M. (1968). The breeding of crop ideotypes. Euphytica17 385-403.

  • Ellis R.H. Covell S. Roberts E.H. Summerfield R.J.(1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea at constant temperatures. Journal of Experimental Botany 37 1503-1515.

  • Fellner M. Sawhney V.K. (2001). Seed germination in a tomato male-sterile mutant is resistant to osmotic salt and low temperature stresses. Theoretical and Applied Genetics 102 215-221.

  • Fenner M. Thompson K. (2005). The ecology of seeds. Cambridge. UK: Cambridge University Press.

  • Finch-Savage W.E. Bergervoet J.H.W. Bino R.J. Clay H.A. Groot S.P.C. (1998). Nuclear replication activity during seed-dormancy breakage and germination in the three tree species: Norway maple (Acer platanoides L.) sycamore (Acer pseudoplatanus L.) and cherry (Prunus avium L.). Annals of Botany 81 519-526.

  • Finch-Savage W.E. Phelps K. (1993). Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. Journal of Experimental Botany 44 407-414.

  • Forcella F. (1998). Real-time assessment of seed dormancy and seedling growth for weed management. Seed Science Research 8 201-209.

  • France J. Thornley J.H.M. (1984). Mathematical models in agriculture. Butterworths London

  • Garcia-Huidobro J. Monteith J.L. Squire G.R. (1982). Time temperature and germination of pearl millet (Pennisetum typhoides S.H.). 1. Constant temperature. Journal of Experimental Botany 33 288-296.

  • Gładyszewska B. (1998). Ocena wpływu przedsiewnej laserowej biostymulacji nasion pomidorów na proces ich kiełkowania. Rozprawa doktorska. Lublin. Maszynopis.

  • Gładyszewska B. Koper R. (2002a). Symulacyjny model procesu kiełkowania nasion w ujęciu analitycznym. Inżynieria Rolnicza 7 59-63.

  • Gładyszewska B. Koper R. (2002b). Zastosowanie modelowania matematycznego w ocenie żywotności nasion. Inżynieria Rolnicza 7 51-57.

  • Gładyszewska B. (2004). Matematyczne metody oceny wpływu procesów przedsiewnej stymulacji na kiełkowanie nasion. Acta Agrophysica 3(3) 443-452.

  • Gładyszewska B. Ciupak A. (2009). Effect of temperature on the viability of buckwheat (cv. Kora) seeds. Teka Komisji Motoryzacji i Energetyki Rolnictwa 6 31-39.

  • Gładyszewska B. Koper R. Drabarek L. Gładyszewski G. (2001). Analityczne modele procesu kiełkowania nasion. Inżynieria Rolnicza 2 57-61.

  • Glaser R. (1975). Wstęp do biofizyki. PZWL Warszawa.

  • Hageseth G.T. Joyner R.D. (1975). Kinetics and thermodynamics of isothermal seed germination. Journal of Theoretical Biology 53 51-65.

  • Hunt L.A. (1993). Designing improved plant types: a breeder’s viewpoint. In: F.W.T. Penning de Vries F.P. Teng P. Metselaar K. (eds) Systems approaches for agricultural development. Springer Dordrecht

  • Jazwiński J. Pabis S. Wieremiejczyk W. (1975). Symulacyjne metody badań niezawodności systemów technicznych. Materiały na „Szkołę Zimową -75”. Jaszowiec 13-18 stycznia 1975 Katowice.

  • Keller E.F. (2002). Making Sense of Life. Explaining Biological Development with Models Metaphors and Machines. Cambridge MA: Harvard University Press.

  • Köchy M. Tielbörger K. (2007). Hydrothermal time model of germination: parameters for 36 Mediterranean annual species based on a simplified approach. Basic and Applied Ecology 8171-182.

  • Kropff M.J. Haverkort A.J. Aggarwal P.K. Kooman P.L. (1995). Using systems approaches to design and evaluate ideotypes for specific environments. J. Bouma A. Kuyvenhoven B.A.M. Bouman J.C. Luyten H.G. Zistra (Eds.) Eco-regional approaches for sustainable li use and food production Kluwer Academic Publishers Dordrecht The Netherlis 417-435.

  • Maksym P. Marciniak A.W. Kostecki R. (2006). Zastosowanie sieci bayesowskich do modelowania rolniczego procesu produkcyjnego. Inżynieria Rolnicza 12 321-330.

  • Matthews R.B. Kropff M.J. Bachelet D. van Laar H.H. (1995). Modelling the impact of climate change on rice production in Asia. CAB International Wallingford UK.

  • Mesgaran M.B. Mashhadi H.R. Alizadeh H. Hunt J. Young K.R. Cousens R.D. (2012). Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research 53 89-101.

  • Michałek R. (20018). Przyszłość inżynierii rolniczej jako nauki i kierunku kształcenia. Inżynieria Rolnicza 1(99) 297-302.

  • Minorsky P.V. (2003). Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiolgy 132 404-409.

  • Muszyński S. Świetlicka I. Świetlicki M. Gładyszewska B. (2015). Modelowanie kinetyki kiełkowania nasion pomidora z wykorzystaniem równania Gompertza. Acta Scientiarum Polonorum Technica Agraria 14(1-2) 61-69.

  • Niklas K. (2003). The bio-logic and machinery of plant morphogenesis. American Journal of Botany 90 515-525.

  • Odabas M.S. Mut Z. (2007). Modelling the effect of temperature on percentage and duration of seed germination in grain legumes and cereals. American Journal of Plant Physiology 2 303-310.

  • Pabis S. (1985). Metodologia i metody nauk empirycznych. PWN Warszawa.

  • Palanisamy S. Penning de Vries F.W.T. Mohiass S. Thiyagarajan T.M. Kareem A.A. (1993). Simulation in pre-testing of rice genotypes in Tamil Nadu. F.W.T. Penning de Vries P. Teng K. Metselaar (Eds.) Systems approaches for sustainable agricultural development Kluwer Academic Publishers Dordrecht The Netherlis 63-75.

  • Penning de Vries F.W.T. (1982). Simulation of Plant Growth and Crop Production. Van Laar H.H. (Eds.) Simulation Monographs Pudoc Wageningen The Netherlis.

  • Prusinkiewicz P. (2004). Modeling plant growth and development. Current Opinion in Plant Biology 7 79-83.

  • Rabbinge R. (1986). The bridge function of crop ecology. Netherlis Journal of Agricultural Sciences 34 239-251.

  • Ranal M.A. Santana D.G. (2006). How and why to measure the germination process. Revista Brasileira de Botânica 29 1-11.

  • Ratkowsky D.A. Lowry R.K. McMeekin T.A. Stokes A.N. Chiler R.E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of bacteriology 154(3) 1222-1226.

  • Roberts E.H. (1988). Temperature and seed germination. In: Long S.P. Woodword F.I. (Eds.) Plants and Temperature. Society for Experimental Biology. Company of Biologists Cambridge.

  • Roberts E.H. Ellis R.H. (1989). Water and seed survival. Annals of Botany 63 39-52.

  • Roe B. P. (1992). Probabilistic and statistics in experimental physics. Springer-Verlag New York.

  • Roman E.S. Murphy S.D. Swanton C.J. (2000). Simulation of Chenopodium album Seedling Emergence. Weed Science 48 217-224

  • Roman E.S. Thomas A.G. Murphy S.D. Swanton C.J. (1999). Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science 47 149-155.

  • Room P. Hanan J. Prusinkiewicz P. (1996). Virtual plants: new perspectives for ecologists pathologists and agricultural scientists. Trends in Plant Science 1 33-38.

  • Rowse H.R. Finch-Savage W.E. (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist 158 101-108.

  • Seligman N.G. (1990). The crop model record: promise or poor show? R. Rabbinge J. Goudriaan H. van Keulen F.W.T. Penning de Vries H.H. van Laar (Eds.) Theoretical Production Ecology: Reflections and Prospects PUDOC Wageningen pp. 249-258.

  • Shafii B. Price W.J. Swensen J.B. i Murray G.A. (1991). “Nonlinear Estimation of Growth Curve Models for Germination Data Analysis” in Proceedings of the 1991 Kansas State University Conference on Applied Statistics in Agriculture G. A. Milliken i J. R. Schwenke (eds.) Manhattan KS: Kansas State University 19-42.

  • Shafii B. Price W.J. (2001). Estimation of cardinal temperatures in germination data analysis. Journal of Agricultural Biological and Environmental Statistics 6 356-366

  • Tjørve E. Tjørve K.M.C. (2010). A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. Journal of Theoretical Biology 267 417-425.

  • Trajer J. (2005). Sztuczne sieci neuronowe w modelowaniu procesów z ograniczonym zbiorem danych w inżynierii rolniczej. Inżynieria Rolnicza 2(62) 55-61.

  • Tsoularis A. Wallace J. (2002). Analysis of logistic growth models. Mathematical Biosciences 179 21-55.

  • Van Keulen H. Stol W. (1995). Agro-ecological zonation for potato production. A.J. Haverkort D.K.L. Mackerron (Eds.) Potato ecology and modelling of crops under conditions limiting growth Kluwer Academic Publishers Dordrecht The Netherlis (1995) pp. 357-371.

  • Verhulst P.F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique 10 113.

  • Werker A.R. Jaggard K.W. (1997). Modelling Asymmetrical Growth Curves that Rise and then Fall: Applications to Foliage Dynamics of Sugar Beet (Beta vulgaris L.). Annals of Botany 79 657-665.

  • Wolf J. (1993). Effects of climate change on wheat production potential in the European Community. European Journal of Agronomy2 281-292.

  • Yang R.C. Kozak A. Smith J.H.G. (1978). The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research 8 424-431.

  • Zeide B. (1993). Analysis of growth equations. Forest Science 39 594-616.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 136 5
PDF Downloads 374 250 37