The Impact of Shearing and Flexibility of Cultivator Tines on the Vertical Forces Value

Open access


The paper presents the outcomes of the research on the impact of shearing depth and flexibility of cultivator tines with cultivator points on the value of vertical forces acting thereon. The object of the research consisted in “S” tines with the flexibility coefficient of 0.0061; 0.0711; 0.0953 and 0.1406 m∙kN−1. The investigations were carried out in field conditions in sandy clay soil with moisture of 11.2%. The forces were measured for the assumed shearing depths which were 5, 9 and 13 cm at the shearing speed of 3 m∙s−1. A stand for measurement of forces acting on soil shearing tools in the field conditions was used. It was found out that the increase of the shearing depth causes a linear increase of the vertical force, but the force gradient decreases with the growth of the tine flexibility. Moreover, it was found out that the increase of the tine flexibility at the beginning causes the increase and then the decrease of the vertical force regardless the shearing depth. The impact of flexibility on the vertical force value was described with the parabola equation. The tines flexibility, at which the highest value of vertical force may be expected, grows with the reduction of the shearing depth.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Al-Janobi A.A.; Wahby M.F.; Aboukarima A.M.; Al-Hamed S.A. (2002). Influence of chisel plow shank shape on horizontal and vertical force requirements Agricultural Sciences 7(1) 13-19.

  • Al-Kheer A.A.; Kharmanda M.G.; El Hami A.; Mouazen A.M. (2011). Estimating the variability of tillage forces on a chisel plough shank by modeling the variability of tillage system parameters. Computers and Electronics in Agriculture 78 61-70.

  • Askari M.; Shahgholi G.; Abbaspour-Gilandeh Y.; Tash-Shamsabadi H. (2016). The effect of new wings on subsoiler performance. Applied Engineering in Agriculture 32(3) 353-362.

  • Berntsen R.; Berre B.; Torp T.; Aasen H. (2006). Tine forces established by a two-level model and the draught requirement of rigid and flexible tines. Soil & Tillage Research 90 230-241.

  • Chen Y.; Cavers C.; Tessier S.; Monero F.; Lobb D. (2005). Short-term tillage effects on soil cone index and plant development in a poorly drained heavy clay soil. Soil & Tillage Research 82 161-171.

  • Davoudi S.; Alimardani R.; Keyhani A.; Atarnejad R. (2008). A Two Dimensional Finite Element Analysis of a Plane Tillage Tool in Soil Using a Non-linear Elasto-Plastic Model. American-Eurasian Journal of Agricultural & Environmental Sciences 3(3) 498-505.

  • Fenyvesi L.; Hudoba Z. (2010). Vibrating Tillage Tools. Soil Engineering. Springer Berlin Heidelberg 31-49.

  • Godwin R.J. (2007). A review of the effect of implement geometry on soil failure and implement forces. Soil & Tillage Research 97 331-340.

  • Ibrahmi A.; Bentaher H.; Hamza E.; Maalej A.; Mouazen A.M. (2015). Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 2. Experimental validation with soil bin test. Computers and Electronics in Agriculture 117 268-275.

  • Jafari R.; Karparvarfard S.H.; Hosseini S.A. (2011). The effect of geometry and motion characteristics of narrow tillage tool on soil disturbance efficiency. Journal of Agricultural Machinery Science 7(3) 253-258.

  • Lejman K.; Owsiak Z.; Pieczarka K.; Molendowski F. (2015). Metodyczne aspekty wyznaczania parametrów przebiegu siły wypadkowej działającej na sprężynowe zęby kultywatora. Inżynieria Rolnicza 4(156) 69-78.

  • Lisowski A.; Klonowski J.; Green O.; Świętochowski A.; Sypuła M.; Strużyk A.; Nowakowski T.; Chlebowski J.; Kamiński J.; Kostyra K.; Mieszkalski L.; Lauryna D.; Margielski J. (2016). Duckfoot tools connected with flexible and stiff tines: Three components of resistances and soil disturbance. Soil & Tillage Research 158 76-90.

  • Przybył J.; Kowalik I.; Dach J.; Zbytek Z. (2009). Analiza jakości pracy agregatów do uprawy przedsiewnej. Journal of Research and Application in Agriculture Engineering 4(54) 62-68.

  • Rouw A.; Huon S.; Soulileuth B.; Jouquet P.; Pierret A.; Ribolzi O.; Valentin C.; Bourdon E.; Chantharath B. (2010). Possibilities of carbon and nitrogen sequestration under conventional tillage and no-till cover crop farming (Mekong valley Laos). Agriculture Ecosystems and Environment 136 148-161.

  • Sánchez-Girón V.; Ramırez J.J.; Litago J.J.; Hernanz J.L. (2005). Effect of soil compaction and water content on the resulting forces acting on three seed drill furrow openers. Soil & Tillage Research 81 25–37.

  • Shmulevich I.; Asaf Z.; Rubinstein D. (2007). Interaction between soil and a wide cutting blade using the discrete element method. Soil & Tillage Research 97 37–50.

  • Ucgul M.; Fielke J.M.; Saunders C. (2015). Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modeling. Information Processing in Agriculture 2 130–141.

  • Zhang X.; ChenY. (2017). Soil disturbance and cutting forces of four different sweeps for mechanical weeding. Soil & Tillage Research 168 167–175.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 78 3
PDF Downloads 209 91 8