Process Efficiency and Energy Consumption During the Extrusion of Potato and Multigrain Formulations

Open access


The aim of the research was to determine the effect of extrusion conditions (various moisture content of raw materials and screw rotation speed), as well as the effect of recipe composition on the process efficiency and the energy consumption during treatment of potato and multigrain products. The efficiency of the extrusion process (Q) was determined by the mass of the product obtained at a given time for all prepared raw material mixtures and the process parameters used, while the specific mechanical energy demand was determined using the SME index. The obtained results allow to conclude that the level of raw materials moisture content had a greater impact on the efficiency and energy consumption of the extrusion process than the variable screw speed during the treatment. The efficiency of the process increased with the increasing moisture of the tested compositions, while a decrease in the requirements of SME was observed. The use of differentiated raw material compositions also influenced the Q and SME values determined during the tests.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altan A. McCarthy K.L. Maskan M. (2008). Extrusion cooking of barley flour and process parameter optimization by using response surface methodology. Journal of the Science of Food and Agriculture 88 1648-1659.

  • Bastos-Cardoso I. Zazueta-Morales J.J. Martinez-Bustos E. Kil-Chang Y. (2007). Development and characterization of extruded pellets of whole potato (Solanum tuberosum L.) flour expanded by microwave heating. Cereal Chemistry 84(2) 137-144.

  • Blicharz-Kania A. Andrejko D. Ślaska-Grzywna B. Starek A. Szejgiec P. Krzaczek P. (2015). The influence of moisture content of barley on the flaking process. Agricultural Engineering 1(153) 5-14.

  • Bouasla A. Wójtowicz A. Juśko S. Zidoune M.N. (2017). Energy consumption and process efficiency as affected by extrusion-cooking conditions and recipe formulation during the production of gluten-free rice-legumes products Agricultural Engineering 21(1) 39-46.

  • Camacho-Hernández I.L. Zazueta-Morales J.J. Gallegos-Infante J.A. Aguilar-Palazuelos E. Rocha-Guzmán N.E. Navarro-Cortez R.O. Jacobo-Valenzuela N. Gómez-Aldapa C.A. (2014). Effect of extrusion conditions on physicochemical characteristics and anthocyanin content of blue corn third-generation snacks. CyTA Journal of Food 12(4) 320-330.

  • Cheyne A. Barnes J. Gedney S. Wilson D.I. (2005). Extrusion behaviour of cohesive potato starch pastes: II. Microstructure-process interactions. Journal of Food Engineering 66(1) 13-24.

  • da Silva E.M.M. Ascheri J.L.R. de Carvalho C.W.P. Takeiti C.Y. de J. Berrios J. (2014). Physical characteristics of extrudates from corn flour and dehulled carioca bean flour blend. LWT - Food Science and Technology 58 620-626.

  • Gutiérrez J. Catalá-Civera J. Bows J. Pẽnaranda-Foix F. (2017). Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. Journal of Food Engineering 202 1-8.

  • Juśko S. Mościcki L. Wójtowicz A. (2009). Cooling-forming section. Design Patent PL64690Y1. Patent Office Bulletin (BUP) 2(195) 25.

  • Kaur G.J. Rehal J. Singh B. Singh A. K. Kaur A.(2015). Development of multigrain breakfast cereal using extrusion technology. Asian Journal of Dairy and Food Research34(3) 219-224.

  • Kraus S. Schuchmann H.P. Gaukel V. (2014). Factors influencing the microwave induced expansion of starch-based extruded pellets under vacuum. Journal of Food Process Engineering 37 264-272.

  • Kraus S. Sólyom K. Schuchmann H.P. Gaukel V. (2013). Drying kinetics and expansion of nonpredried extruded starch-based pellets during microwave vacuum processing. Journal of Food Process Engineering 36 763-773.

  • Kręcisz M. (2016). Energy consumption during production of corn extrudates in relation to the process parameters. Agriculture Engineering 20(7) 195-203.

  • Majzoobi M. Farahnaky A. (2011). Comparison of the effects of extrusion cooking on some cereal starches. International Journal of Food Engineering 6(3) 2. Doi:10.2202/1556-3758.1456.

  • Marks N. (2010). Wpływ wilgotności na zużycie energii bezpośredniej w procesie rozdrabniania ziarna żyta i pszenżyta. Inżynieria Rolnicza 7(125) 125-130.

  • Meng X. Threinen D. Hansen M. Driedger D. (2010). Effects of extrusion conditions on system parameters and physical properties of a chickpea flourbased snack. Food Research International 43 650-658.

  • Moscicki L. (2011). Snack pellets. In: Extrusion-Cooking Techniques Wiley VCH Germany 81–89.

  • Nath A. Chattopadhyay P.K. Majumdar G.C. (2007). High temperature short time air puffed ready-to-eat (RTE) potato snacks: process parameter optimization. Journal of Food Engineering 80 770-780.

  • Ruiz-Ruiz J. Martínez-Ayala A. Drago S. González R. Betancur-Ancona D. Chel-Guerrero L. (2008). Extrusion of a hard-to-cook bean (Phaseolus vulgaris L.) and quality protein corn (Zea mays L.) flour blend. LWT - Food Science and Technology 41 1799-1807.

  • Ryu G. H. Ng P. K. (2001). Effect of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch/Stärke53 147-154.

  • Wójtowicz A. Zalewska-Korona M. Jabłońska-Ryś E. Skalicka-Woźniak K. Oniszczuk A. (2018). Chemical characteristics and physical properties of functional snacks enriched with powdered tomatoes. Polish Journal of Food and Nutrition Sciences68(3) 251–261.

  • van der Sman R.G.M. Broeze J. (2013). Structuring of indirectly expanded snacks based on potato ingredients: A review. Journal of Food Engineering114(4) 413-425.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 396 192 7
PDF Downloads 402 248 13