Mathematical Modeling of Actinidia arguta (Kiwiberry) Drying Kinetics

Open access


Consumers and scientists exhibit a growing interest in bioactive ingredients of natural origin with strong pro-health effects. Such properties have been found in fruits of of Actinidia argute, commonly known as kiwiberry (mini kiwi or hardy kiwi). Appropriate methods and parameters of the drying process enable obtaining a product with preserved high pro-health properties. The obejctive of this paper was to study the influence of the selected drying methods on the drying kinetics of actinidia. Commonly known mathematical models were used to describe the process. The kinetics of convective, microwave-convective, infrared and vacuum drying was investigated. The process was performed until samples reached dimensionless moisture ratio (MR) of 0.02. The quickest method was vacuum drying reaching moisture ratio target after 286 min, and the slowest was convective drying characterized by 1352 min of drying. In general, Midilli et al.’s model was evaluated as the most adequate for description of the moisture transfer in the fruit samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aghbashlo M. Kianmehr M.H. Samimi-Akhijahani H. (2008). Influence of drying conditions on the effective moisture diffusivity energy of activation and energy consumption during the thin-layer drying of beriberi fruit (Beriberidaceae). Energy Conversion and Management 49 2865-2871.

  • Arslan D. Özcan M.M. Okyay Mengeş H. (2010). Evaluation of drying methods with respect to drying parameters some nutritional and colour characteristics of peppermint (Menthapiperita L.). Energy Conversion and Management 51 2769-2775.

  • Basile A. Giorgano S. Lopez-Saez J.A. Cobianchi C. (1999). Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52 1479-1482.

  • Chin S.K. Siew E.S. Soon W.L. (2015). Drying characteristics and quality evaluation of kiwi slices under hot air natural convective drying method. International Food Research Journal 22(6) 2188-2195.

  • Ciurzyńska A. Piotrowski D. Lenart A. Łukasik P. (2012). Sorption Properties of Vacuum-Dried Strawberries. Drying Technology 30 850-858.

  • Crank J. (1975). The mathemacics of diffusion. Drying Technology 30 347.

  • Demir V. Gunhan T. Yagcioglu A.K. Degirmencioglu A. (2004). Mathematical modeling and the determination of some quality parameters of air-dried bay leaves. Biosystems Engineering 88(3) 325-335.

  • Duttaroy A.K. Jørgensen A. (2004). Effects of kiwifruit consumption on platelet aggregation and plasma lipids in healthy human volunteers. Platelets 15(5) 287-292.

  • Janowicz M. Lenart A. (2007). Rozwój i znaczenie operacji wstępnych w suszeniu żywności. Właściwości Fizyczne Suszonych Surowców i Produktów Spożywczych Komitet Agrofizyki PAN Wydawnictwo Naukowe FRNA Lublin 15-33.

  • Lewicki P.P. (2006). Design of hot air drying for better foods. Trends Food Science Technology 17(4) 153-163.

  • Latocha P. (2012). Some morphological and biological features of ‘Bingo’ – a new hardy kiwifruit cultivar from Warsaw University of Life Sciences (WULS) in Poland. Rocznik Polskiego Towarzystwa Dendrologicznego 60 61-67.

  • Latocha P. Krupa T. Wołosiak R. Worobiej E. Wilczak J. (2010). Antioxidant activity and chemical difference in fruit of different Actinidia sp. International Journal of Food Sciences and Nutrition 61(4) 381-394.

  • Latocha P. Wołosiak R. Worobiej E. Krupa T. (2013). Clonal differences in antioxidant activity and bioactive constituents of hardy kiwifruit (Actinidia arguta) and its year-to-year variability. Journal of the Science of Food and Agriculture 93 1412-1419.

  • Maritza A.M. Sabah M. Anaberta C.-M. Montejano-Gaitán J. G. Allaf K. (2012). Comparative study of various drying processes at physical and chemical properties of strawberries. Procedia Engineering 42 267-282.

  • Midilli A. Kucuk H. Yapar Z. (2002). A new model for single layer drying. Drying Technology 1503-1513.

  • Rahman M.S. Perera C.O. Thebaud C. (1997). Desorption isotherm and heat pump drying kinetics of peas. Food Research International 30 485-491.

  • Ramaswamy H.S. Nsonzi F. (1998). Convective air drying kinetics of osmotic ally pre-treated blueberries. Drying Technology 16 743-759.

  • Rush E.C. Patel M. Plank L.D. Ferguson LR. (2002). Kiwifruit promotes laxation in the elderly. Asia Pacific Journal Clinical Nutrition 11(2) 164-168.

  • Sarimeseli A. (2011). Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Conversion and Management 52 1449-1453.

  • Sękowski B. (1993). Pomologia systematyczna. Wydawnictwo Naukowe PWN Warszawa 2 172-175.

  • Soysal Y. Öztekin S. Eren Ö. (2006). Microwave drying of parsley: Modeling kinetics and energy aspects. Biosystems Engineering 93 403-413.

  • Strumiłło C. (2005). On perspective developments in drying. Materiały z Sympozjum “Proceedings of the 11th Polish Drying Symposium XI PSS” Poznań Polska 13-16 September 2005 materials provided on CD.

  • Thuwapanichayanan R. Prachayawarakorn S. Kunwisawa J. Soponronnarit S. (2011). Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT - Food Science and Technology 44(1) 1502-1510.

  • Vega-Gálvez A. Miranda M. Díaz L. P. Lopez L. Rodriguez K. Di Scala K. (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresource Technology 101 7265-727.

  • Vega-Gálvez A. Miranda M. Clavería R. Quispe I. Vergara J. Uribe E. Paez H. Di Scala K. (2011). Effect of air temperature on drying kinetics and quality characteristics of osmotreated jumbo squid (Dosidicus gigas). LWT Food Science and Technology 44(1) 16-23.

  • Wang C.Y. Singh R.P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of the American Society of Agricultural Engineers 11 668-672.

  • Wiktor A. Iwaniuk M. Śledź M. Nowacka M. Chudoba T. Witrowa-Rajchert D. (2013). Drying Kinetics of Apple Tissue Treated by Pulsed Electric Field. Drying Technology 31 112-119.

  • Wiktor A. Łuczywek K. Witrowa-Rajchert D. (2012a). Modelowanie matematyczne kinetyki suszenia mikrofalowo-konwekcyjnego liści bazylii. Zeszyty Problemowe Postępów Nauk Rolniczych 570 127-141.

  • Wiktor A. Nowacka M. Śledź M. Selke M. Witrowa-Rajchert D. (2012b). Kinetyka suszenia konwekcyjnego wspomaganego ogrzewaniem mikrofalowym miąższu jabłka - dobór modelu matematycznego. Nauki Inżynierskie i Technologie 4(7) 99-111.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 190 13
PDF Downloads 265 143 14