Geometrical Model of Lemon Fruit

Open access


A proposal of a mathematical method of modelling of the lemon shape with Bézier's curves was presented. Lisbon, Verna, Genoa lemon cultivars were selected for verification of the modelling method. The lemon contour, which is its meridian, was described with three smoothly combined Bézier's curves. Pictures taken in 10 locations changing every 36o were the basis for description of lemon contours. Bézier's curves, which approximate meridians located on the surface of lemons, are their 3D models. The presented method may be applied for mathematical modelling of the lemon shape.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alchanatis V. Peleg K. Ziv M. (1993). Classification of tissue culture segments by color machine vision. JAER 55 299-311.

  • Al-Juhaimi F.Y. Ghafoor K. (2013). Bioactive compounds antioxidant and physico-chemical properties of juice from lemon mandarin and orange fruits cultivated in Saudi Arabia. Pakistan Journal Botany45(4) 1193-1196.

  • Anders A. Markowski P. Kaliniewicz Z. (2014). Badanie właściwości geometrycznych i fizycznych owoców wybranych odmian gruszy na podstawie modeli numerycznych uzyskanych za pomocą skanera 3D. Zeszyty Problemowe Postępów Nauk Rolniczych 577 3-12.

  • Baradaran Motie J. Miraei Ashtiani S. H. Abbaspour-Fard M. H. Emadi B. (2014). Modeling physical properties of lemon fruits for separation and classification. International Food Research Journal21(5) 1901-1909.

  • Bozokalfa M. K. Kilic M. (2010). Mathematical modeling in the estimation of pepper (Capsicum annum L.) fruit volume. Chilean Journal of Agricultural Research70(4) 626-632.

  • Burt S.A. (2004). Essential oils: Their antibacterial properties and potential applications in foods: Av review. International Joutnal of Food Microbiology 94 223-253.

  • Ghulam M. (2015). Date Fruites Classification Using Texture Descriptors and Shape-Size Features. Engineering Applications of Artificial Intelligence 37 361-367.

  • Growe T. G. Delwiche M. J. (1996). A system for fruit defect detection in real-time. AGENG 96F-023.

  • Guyer D.E. Miles G. E. Gaultney L. D. Schereiber M. M. (1993). Application of machine vision to shape analysis in leaf and plant identification TASAE 36(1) 163-171.

  • Ho Q. (2011). A Three-Dimensional Multiscale Model for Gas Exchange in Fruit. Plant Physiology 155(3) 1158-1168.

  • Iqbal S. Gopal A. Sarma A. (2011). Volume Estimation of Apple Fruits Using Image Processing. 2011 International Conference on Image Information Processing Himachal Pradesh 1-6.

  • Kakadiya D. Shah R. Shah N. Kachariya C. Patel M. Sukhwani K. (2015). Shape Extraction Methods for Fruits: Technical Review. International Journal of Computer Applications 111(1) 43-48.

  • Khojastehnazhand M. Omid M. Tabatabaeefar A. (2010). Development of a lemon sorting system based on color and size. African Journal of Plant Science 4(4) 122-127.

  • Lalitha K. Muthulakshmi K. Vinothini A. (2015). Proficient acquaintance based system for citrus leaf disease recognition and categorization. International Journal of Computer Science and Information Technologies 6(3) 2519-2524.

  • Lino A.C.L. Sanches J. Fabbro I.M.D. (2008). Image processing techniques for lemons and tomatoes classification. Bragantia Campinas67(3) 785-789.

  • Mebatsion H.K. Boudon F. Godin C. Pradal C. Génard M. Goz-Bac C. Bertin N. (2011). A novel profile based model 415 for virtual representation of quasi-symmetric plant organs. Computers and Electronics in Agriculture75(1) 113-124.

  • Miller B. K. Delwiche M. J. (1991). Peach defect detection with machine vision. TASAE 34(6) 2588-2597.

  • Mohanapriya M. Ramaswamy L. Rajendran R. (2013). Health and medicinal properties of lemon (Citrus limonum). International Journal Of Ayurvedic And Herbal Medicine3(1) 1095-1100.

  • Moltó E. Aleixos N. Ruiz L. A. Vázquez J. Juste F. (1996). An artificial vision system for fruit quality assessment. AGENG 96 Madrid 96F-078.

  • Moreda G.P. Muñoz M.A. Ruiz-Altisent M. Perdigones A. (2012). Shape determination of horticultural produce using two-dimensional computer vision–A review. Journal of Food Engineering 108(2) 245-261.

  • Ortuño A.A. Baidez P. Gomez M.C. Arcas I. Porras A.G. Del Rio J.A. (2006). Citrus paradise and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicilliumdigitatum. Food Chemistry98(2) 351-358.

  • Rakun J. (2012). Detecting Natural Objects by Means of 2D and 3D Shape Analysis. Optija Croatia 345-354.

  • Rondeau-Mouroa C. Bouchetb B. Pontoirea B. Roberta P. Mazoyerc J. Buléona A. (2003). Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydrate Polymers53 241-252.

  • Ruiz L. A. Moltó E. Juste F. Aleixos N. (1995). Aplicación de métodosópticos para la inspecciónautomática de productoshortofrutícolas VI Congreso de la Sociedad Española de Ciencias Hortícolas Barcelona.

  • Sarkar N. Wolfe R.R. (1985). Feature extraction techniques for sorting tomatoes by computer vision. TASAE 28(3) 970-974.

  • Satya Priya N. Nivetha E. Khilar R. (2016). Efficient Knowledge Based System to Detect Diseases in Lemon Leaf. Imperial Journal of Interdisciplinary Research (IJIR) 2(5) 275-280.

  • Seng W.C. Mirisaee S.H. (2009). A new method for fruits recognition system. Conference: Electrical Engineering and Informatics. ICEEI '09. International Conference on 01 130-134.

  • Swapnil S.P. Dale M.P. (2016). Computer vision based fruit detection and sorting system. Special Issue on International Journal of Electrical Electronics and Computer Systems ISSN (Print): 2347-2820 V-4 I-2. For 3rd National Conference on Advancements in Communication Computing and Electronics Technology [ACCET-2016]

  • Taheri-Garavand A. Nassiri A. (2010). Study on some morphological and physical Characteristics of sweet lemon used in mass models. International Journal of Environmental Sciences 1(4) 580-590.

  • Tao Y. Morrow C. T. Heinemann P. H. Sommer J. H. (1990). Automated machine vision inspection of potatoes. American Society of Agricultural Engineers90-3531 23-27.

  • Uyar R. Erdoğdu F. (2009). Potential use of 3-dimensional scanners for food process modeling. Journal of Food Engineering93 337-343.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 79 3
PDF Downloads 151 58 1