Application of Artificial Neural Networks in Modelling The Contact Area of Grain Seeds

Open access

Abstract

The objective of the research was to create a model which defines the relation between a fundamental contact area of a seed and the pressure force, water content in a seed and its geometrical dimensions with application of artificial neural networks (SSN). Computer program Statistica Neural Networks v. 6.0. was used for formation of a neural model. Tests were carried out on Roma wheat seed and Dańkowskie Złote rye with six various water contents: 0.11 0.15 0.19 0.23 0.28 0.33 (kg·kg-1 dry mass). Caryopses were loaded with eight values of compression force - from 41 N to 230 N. Multiplicity of iterations was 5. Seed material was moistened to obtain a specific water content. Each seed was loaded with compression force with respectively growing values: 41N, 68N, 95N, 122N, 149N, 176N, 203N and 230N. A four-layer network of Perceptron type with 10 neurons in the first and 8 neurons in the second hidden layer was selected as a model which the best defines the contact area of grain seeds loaded with axial force at various moisture levels. This network has 4 inputs (water content, pressure force, thickness and length of caryopses) and one output (elementary contact area of rye and wheat seeds). Comparison of the neural model with empirical formulas obtained from nonlinear estimation proved a considerable higher precision of the first one.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Balasubramanian S. Singh K.K. Kumar R. (2012). Physical properties of coriander seeds at different moisture content. International Agrophysics 26 419-422.

  • Chigarev O. (2013). Model matematyczny procesu zgniatania pojedynczego ziarna w maszynie wytrzymałościowej Instron. Problemy Inżynierii Rolniczej 1(79) 143-149.

  • Dreyfus G. Martinez J.M. Samuelides M. Gordon M. Badran F. Thiria S. Herault L. (2005). Neural Networks Methodology and Applications. Springer Berlin. ISBN-13:978-3-540-22980.

  • Fang Q. Hanna M.A. Haque E. Spillman C.K. (2000). Neural network modeling of energy requirements for size reduction of wheat. Transactions Of The ASAE Volume: 43 Issue: 4 947-952.

  • Francik S. Frączek J. (2001). Model development of the external friction of granular vegetable materials on the basis of artificial neural networks. International Agrophysics 15 231-236.

  • Frączek J. (2003). Wpływ kształtu nasion na wartość powierzchni kontaktu. Inżynieria Rolnicza 9(51) 81-88.

  • Frączek J. Kaczorowski J. i Ślipek Z. (2000). Pomiar rzeczywistej powierzchni kontaktu trących się materiałów. Inżynieria Rolnicza 7(18) 55-63.

  • Frączek J. Kaczorowski J. Ślipek Z. Horabik J. Molenda M. (2003). Standaryzacja metod pomiaru właściwości fizyczno-mechanicznych roślinnych materiałów ziarnistych. Acta Agrophysica 92 ISSN 1234-4525.

  • Horabik J. Molenda M. (2003). Makro- i mikroskopowe modele materiałów sypkich. Acta Agrophysica 93 17-31.

  • Jouki M. Emam-Djomeh Z. Khazaei N. (2012). Physical Properties of Whole Rye Seed (Secale cereal). International Journal of Food Engineering. Volume 8 Issue 4 e-ISSN 1556-3758.

  • Kiełbasa P. (2005). Ocena wybranych cech fizycznych bulw ziemniaków. Inżynieria Rolnicza 6(66) 305-313.

  • Łukaszuk J. Molenda M. Horabik J. i Wiącek J. (2009). Metoda wyznaczania współczynnika tarcia pomiędzy dwoma metalowymi i organicznymi obiektami. Acta Agrophysica Vol. 13 2 407-418.

  • Mohsenin N.N. (1970). Physical properties of plant and animal materials. Gordon and Breach Science Publ. 1970 New York.

  • Molenda M. Horabik J. Grochowicz M. Szot B. (1995). Grains of wheat friction (In Polish). Acta Agrophysica 4 ISSN 1234-4125.

  • Nasirahmadi A. Abbaspour-Fard M.H. Emadi B. Khazaei N.B. (2014). Modelling and analysis of compressive strength properties of parboiled paddy and milled rice. International Agrophysics 28 73-83.

  • Romański L. (2004). Analiza i modelowanie procesu zgniatania ziarna pszenicy. Zeszyty Naukowe AR Wrocław. Rozprawy. Nr 220. ISSN 0867-7964.

  • Romański L. Stopa R. Niemiec A. (2005). Rozkład nacisków powierzchniowych dla ziarna zgniatanego pomiędzy płaskimi płytami. Inżynieria Rolnicza 11(71) 413-421.

  • Ślipek Z. Francik S. Frączek J. (2003). Methodic aspects of creating ANN models in agrophysical research. Acta Agrophysica 2(1) 231-241.

  • Ślipek Z. Kaczorowski J. Fraczek J. (1999). Theoretical and experimental analysis of vegetable materials friction. PTIR. Kraków. ISBN 83-907553-9-4.

  • Zare D. Bakhshipour A. Chen G. (2013). Physical properties of cumin and caraway seeds. International Agrophysics 27 491-494.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 62 1
PDF Downloads 98 39 1