Effect of Cutting Speed and Depth on the Course of Resultant Force Acting on a Cultivator Tine

Open access

Abstract

The paper presents research results on the effect of cutting depth and speed on the resultant force tilt angle and location of its application point on a flexible tine ended with a cultivator point. The studies were carried out in field conditions in sandy clay with the gravimetric moisture of 11.2% and volumetric density of 1470 kg·m−3. Tines whose flexibility coefficient was 0.0061; 0.0711; 0.0953 and 0.1406 m·kN−1 were used. It was found out that that the resultant force tilt angle raises at the increase of the cutting speed and drops at the increase of depth but this angle and its gradient at the increase of the cutting depth grow along with the decrease of the flexibility coefficient of tines. The increase of the cutting speed and depth causes the decrease of both the distance of the resultant force application point on the tool from the bottom of a furrow and a proportion of this parameter to the cutting depth. The courses of the distance of the resultant force application point on the tool from the bottom of a furrow and courses of proportion of this parameter to the cutting depth as the function of cutting do not differ significantly for tines with higher flexibility coefficients while for the most rigid tine values of these parameters and their gradients are higher. All obtained courses of the analysed values as a function of depth and cutting speed were described with regression equations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ASABE (2006). S313.3FEB04. Soil Cone Penetrometer. Mich: ASABE St. Joseph 902-904.

  • Bernacki H. (1981). Teoria i konstrukcja maszyn rolniczych. Tom 1 część I i II. PWRiL Warszawa. ISBN 83-09-00419-2.

  • Berntsen R. Berre B. Torp T Aasen H. (2006). Tine forces established by a two-level model and the draught requirement of rigid and flexible tines. Soil and Tillage Research 90 230-241.

  • Chen Y. Cavers C. Tessier S. Monero F. Lobb D. (2005). Short-term tillage effects on soil cone index and plant development in a poorly drained heavy clay soil. Soil and Tillage Research 82 161-171.

  • Friedman M. (1973). Zemedelske stroje I. Teorie a vypoczet. Statni zemedelske nakladatelstvi Praha.

  • Godwin R.J. Spoor G. (1977). Soil failure with narrow tines. Journal of Agricultural Engineering Research 22 213-228.

  • Godwin R.J. (2007). A review of the effect of implement geometry on soil failure and implement forces. Soil & Tillage Research 97 331-340.

  • Godwin R.J. O’Dogherty M.J. (2007). Integrated soil tillage force prediction models. Journal of Terramechanics 44 3-14.

  • Kuczewski J. (1981). Elementy teorii i obliczeń maszyn rolniczych. Skrypt SGGW Warszawa. ISBN 83-00-01721-6.

  • Lejman K. Owsiak Z. Pieczarka K. Molendowski F. (2015). Metodyczne aspekty wyznaczania parametrów przebiegu siły wypadkowej działającej na sprężynowe zęby kultywatora. Inżynieria Rolnicza 4(156) 69-78.

  • McKyes E. Maswaure J. (1997). Effect of design parameters of flat tillage tools on loosening of a clay soil. Soil & Tillage Research 43 195-204.

  • Onwualu A.P. Watts K.C. (1998). Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil & Tillage Research 48 239-253.

  • Owsiak Z. Lejman K. Wołoszyn M. (2006). Wpływ zmienności głębokości pracy narzędzia na opory skrawania gleby. Inżynieria Rolnicza 4(79) 45-53.

  • Pabin J. Włodek S. Biskupski A. (2007). Fizyczne właściwości gleby i plony roślin w różnych systemach uprawy roli i ogniwach zmianowań. Zeszyty Problemowe Postępów Nauk Rolniczych 520 655-661.

  • Piotrowska E. (2003). Badania filmowe bryły glebowej odkształcanej przez wąskie narzędzie uprawowe. Inżynieria Rolnicza 11(53) 173-178.

  • Przybył J. Kowalik I. Dach J. Zbytek Z. (2009). Analiza jakości pracy agregatów do uprawy przedsiewnej. Journal of Research and Application in Agriculture Engineering 4(54) 62-68.

  • Talarczyk W. Zbytek Z. Gośliński M. (2011). Ocena narzędzia przedniego stosowanego w zestawie uprawowo-siewnym. Journal of Research and Application in Agriculture Engineering 4(56) 165-170.

  • Topakci M. Celik H.K. Canakci M. Rennie A.E.W. Akinci I. Karayel D. (2010). Deep tillage tool optimization by means of finite element method: Case study for a subsoiler tine. Journal of Food Agriculture & Environment 2(8) 531-536.

  • Ucgul M. Fielke J.M. Saunders C. (2014). Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosystems Engineering 121 105-117.

  • Wheeler P.N. Godwin R.J. (1996). Soil dynamics of single and multiple tines at speed up to 20 km/h. Journal of Agricultural Engineering Research 63 243-250.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 46 2
PDF Downloads 112 32 2