Impact of operating temperature of gas transit pipeline on soil quality and production potential of crops

Open access

Abstract

The aim of this study is to investigate the effects of gas transit pipeline temperature on soil moisture, soil temperature and yield of harvest crops. The study area was located in the village Ivanka pri Nitre (Nitra District, Southwestern Slovakia). Soil type in the site is Orthic Brown Chernozem. Temperature of the transported gas increased the soil temperature in the range of 2.07°C to 3.4°C measured in a depth ranging from 250 mm to 350 mm above the gas lines. The temperature also reduced soil moisture by 1.27‒3.18 percentiles of weight. Yield of the winter wheat grown above the gas lines was higher by 9.40% in 2004 and by 13.06% in 2006. Yield of the sunflower grown above the gas lines was higher by 8.05% in 2005. In treatment 1, organic fertilisation in a dose of 50 t/ha affected the yield of the winter wheat above the gas pipeline and the yield increased by 13.95% in 2004.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BAYRAMOV E. – BUCHROITHNER M.F. – McGURTY E. 2013. Differences of MMF and USLE Models for Soil Loss Prediction along BTC and SCP Pipelines. In Journal of Pipeline Systems Engineering and Practise vol. 4 no. 1 pp. 81–96. DOI: 10.1061/(ASCE)PS.1949-1204.0000117

  • BLAŠKO P. 2005. Vplyv tranzitného plynovodného systému na produkčný potenciál pôdy a úrody vybraných druhov plodín [The impact of the transit gas pipeline system on the production potential of the soil and selected crops]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra 79 pp.

  • ČIMO J. 2007. Klimatické zhodnotenie roku 2006 [Climate review of year 2006]. Provided by the Department of biometeorology and hydrology Horticulture and Landscape Engineering Faculty Slovak University of Agriculture in Nitra 12 pp.

  • DEMO M. – BLAŠKO P. – PRČÍK M. – TORMA S. – KOCO Š. 2012. Tranzitný plynovodný systém v poľnohospodárskej krajine [Transit gas pipeline system in agricultural land]. Nitra : Gramond Nitra 87 pp. ISBN 987-80-552-0878-7

  • DEMO M. – POLÁKOVÁ Z. 2011. Vplyv tranzitného plynovodného systému na teplotu pôdy v závislosti od termínu zisťovania vzdialenosti od plynovodného potrubia a vrstvy pôdy [Effects of transit pipeline system on soil temperature depending on term of data collection distance from gas pipes and soil layer.] In Acta regionalia et environmentalica vol. 8 no. 2 pp. 38–42.

  • GEL’TSER Y.G. – BOBROV A.A. – GEL’TSER V.Y. 1990. Some properties of soils on reforestation on lands near Moscow disrupted by gas pipeline construction. In Soviet-Soil-Science vol. 22 no.1 pp. 74–80.

  • GU L. – POST W.M. – KING A.M. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysis. In Global Biochemical Cycles vol. 18 no. 1 pp. 1022–1032. DOI: 10.1029/2003GB002119

  • HALMOVÁ D. 2009. Vplyv tranzitného plynovodu na vybrané vlastnosti a parametre pôdneho krytu [Impact of the transit gas pipeline on the selected properties and parameters of the soil cover]. PhD. Thesis. Nitra : Depon. at Slovak Agricultural Library of Slovak University of Agriculture Nitra 128 pp.

  • HALMOVÁ D. – FEHÉR A. 2014. Effect of transit gas pipeline temperature on the production potential of agricultural soils. In Journal of Central European Agriculture vol. 15 no. 3 pp. 245–253. DOI: 10.5513/JCEA01/15.3.1481

  • HOUŠKOVÁ B. 1999. Metódy stanovenia ukazovateľov agrochemických vlastností pôdy [Methods for determining of the indicators of agrochemical soil properties]. In FIALA et al. Záväzné metódy rozborov pôd. Čiastkový monitorovací systém – Pôda. Bratislava : Soil Science and Conservation Research Institute pp. 124–125. ISBN 80-85361-55-8

  • KRAKAUER N.Y. – COOK B.I. – PUMA M.J. 2010 Contribution of soil moisture feedback to hydroclimatic variability. In Hydrology and Earth System Sciences vol. 14 no. 3 pp. 505–520. DOI: 10.5194/hess-14-505-2010

  • OLSON E.R. – DOHERTY J.M. 2011. The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands. In Ecological Engineering vol. 39 pp. 53–62. DOI: 10.1016/j.ecoleng.2011.11.005

  • PENUELAS J. – PRIETO P. – BEIER C. – CESARACCIO C. – ANGELIS P – DATOS G. – EMMETT B.A. – ESTIARTE M. – GARADNAI J. – GORISSEN A. – LÁNG KOVÁCS E. – KRÖEL-DULAY G. – LLORENS L. – PELLIZZARO G. – RIIS-NIELSEN T. – SCHMIDT I.K. – SIRCA C. – SOWERBY A. – SPANO D. – TIETEMA A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. In Global Changes Biology vol. 13 no. 12 pp. 2563–2581. DOI: 10.1111/j.1365-2486.2007.01464.x

  • RUSANOVA G.V. 1997. Evolution of human-affected soils along a gas pipeline in the Northern Urals. In Eurasian Soil Science C/C of Pochvovedenie vol. 30 no. 7 pp. 889–897.

  • SZÉPLAKY D. – VASZI Z. – VARGA A. 2013. Effect of temperature distribution around pipelines for transportation of natural gas on environment. In The Holistic Approach to Environment vol. 3 no.1 pp. 33–40. http://www.cpo.hr/Paper%2035.pdf. ISSN 1848-0071

  • SKALSKÝ R. – HALAS J. – MADARAS M. 2002. Zistenie vplyvu prevádzkových potrubí tranzitnej sústavy SPP a. s. DSTG na pôdu a úrodnosť vybraných druhov poľnohospodárskych plodín [Determination of the impact of the transit pipelines SPP JSC DSTG on the soil and the yield of selected agricultural crops]. Bratislava : Depon. at Soil Science and Conservation Research Institute 21 pp.

  • SHI P. – XIAO J. – WANG YF. – CHEN LD. 2014. The effects of pipeline construction disturbance on soil properties and restoration cycle. In Environmental Monitoring and Assessment vol. 186 no. 3 pp. 1825–1835. DOI: 10.1007/s10661-013-3496-5

  • SHI P. – HUANG Y. – CHEN C. – WANG. Y. – XIAO J. – CHEN LD. 2015. How does pipeline construction affect land desertification? A case study in northwest China. In Journal of the International Society for the Prevention and Mitigation of Natural Hazards vol. 77 no. 3 pp. 1993–2004. DOI: 10.1007/s11069-015-1688-8

  • SPP a. s. 2004–2006. Priemerné mesačné teploty transportovaného plynu v roku 20042006 na vstupe a výstupe kompresorových staníc [Average monthly temperatures of transported gas in 2004–2006 at the inlet and outlet of compressor stations]. Nitra : Depon. at Slovak Gas Company JSC 12 pp.

  • SOON Y.K. – ARSHAD M.A. – RICE W.A. – MILLS P. 2000. Recovery of chemical and physical properties of boreal plain soils impacted by pipeline burial. In Canadian Journal of Soil Science vol. 80 no. 3 pp. 489–497. DOI: 10.4141/S99-097

  • ŠIŠKA B. – ČIMO J. 2006. Klimatická charakteristika rokov 2004 a 2005 v Nitre [Climate characteristics of the years 2004–2005 in Nitra]. Nitra : Slovak University of Agriculture 49 pp. ISBN 80-8069-761-2

  • WALKER P.J. – KOEN T.B. 1995. Natural regeneration of ground storey vegetation in a semi-arid woodland following mechanical disturbance and burning. 1. Ground cover levels and composition. In Rangeland Journal vol. 17 no. 1 pp. 46–58. DOI: 10.1071/RJ9950046

  • WEN X.F. – YUA G.R. – SUN X.M. – LI Q.K. – LIU Y.F. – ZHANG L.M. – REN CH.Y. – FU Y.L. – LI Z.Q. 2006. Soil moisture effect on temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. In Agricultural and Forrest Meteorology vol. 137 no. 3–4 pp. 166–167. DOI: 10.1016/j.agrformet.2006.02.005

  • YAKOVLEVA N. 2011. Oil pipeline construction in Eastern Siberia: Implications for indigenous people. In Geoforum vol. 42 no. 6 pp. 708–719. DOI: 10.1016/j.geoforum.2011.05.005

  • XIAO J. – WANG YF. – SHI P. – YANG L. – CHEN LD. 2014. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions. In Environmental Monitoring and Assessment vol. 186 no. 11 pp. 8037–8048. DOI: 10.1007/s10661-014-3986-0

Search
Journal information
Impact Factor


CiteScore 2018: 0.81

SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.535

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 215 17
PDF Downloads 170 113 17