Comparison of Chemical Structure of Alginite Humic Acids Isolated with Two Different Procedures with Soil Humic Acids

Open access


The different origin of alginite and soil organic matter may be the reason of differences in their humic acids (HA) chemical structure. One of the aims of this article is to compare the chemical composition of alginite HA and HA isolated from different soil types. Another aim of this article is to compare the chemical structure of humic acids of alginite isolated with two different procedures: modified IHSS (International Humic Substances Society) method and simplified extraction method. The modified IHSS method was applied for the isolation of alginite and soil HA. To obtain sufficient amount of alginate HA for biological experiments, simplified extraction method suited for large volumes of HA was applied. The differences in elemental analysis and ash proportion in HA extracted by modified IHSS method (C = 35.4, H = 43 atomic%, ash content = 0.08%) and simplified extraction method (C = 31, H = 31 atomic%, ash content = 7.42%) can be caused by different concentration of extraction solution and also differences in purification of HA. The differences in chemical structure between alginate HA and HA isolated from different soil types according to the data of elemental analysis (C content of alginite HA = 35.4 atomic%, C content in soils HA = 38.2‒49.1 atomic%) and 13C nuclear magnetic resonance (NMR) spectra (degree of aromaticity of alginite HA = 24.4% and soil HA= 35.9‒53%) were found. Results of 13C NMR show that the content of aromatic carbon was decreasing in the following order: Haplic Chernozem HA > Andic Cambisol HA > Haplic Cambisol HA > alginite HA. Based on the obtained results, it can be concluded that the differences in the chemical structure of alginite and soil HA can be explained by the difference in the origin of organic matter in alginite and soil samples. The source of organic matter in alginite is mainly type II kerogen from algae and that of soil is lignin and cellulose (type III kerogen) of higher plants.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • BARANČÍKOVÁ G. 2008. Application of Nuclear Magnetic Resonance Spectroscopy in Soil Organic Matter. In Chemické Listy vol. 102 no.12 pp. 1100‒1106.

  • BARANČÍKOVÁ G. ‒ BEZÁK P. ‒ DODOK R. ‒ CHLPÍK J. ‒ KOBZA J. ‒ MAKOVNÍKOVÁ J. ‒ PÍŠ V. 2011. Methods of determining indicators of agrochemical soil properties. In HRIVŇÁKOVÁ K. ‒ MAKOVNÍKOVÁ J. (Eds.) Integrated procedures of soil analyse. Bratislava : VUPOP pp. 52‒115. ISBN 978-80-89128-89-1

  • BARANČÍKOVÁ G. 2014. Monitoring of quantitative and qualitative composition of soil organic mater. In KOBZA J. (Ed.) Soil monitoring of the Slovak Republic. Actual state and development og monitoring soil properties as the basis for their protection and land use (the period 2007-2012). Bratislava : NPPC VUPOP pp. 53‒89. ISBN 978-80-8163-004-0

  • BELÁČEK B. 2006. Možnosti využitia novej suroviny – alginitu v lesnom hospodárstve [Possibility of using new material – alginate in forestry] : PhD Thesis Zvolen : Technical University of Zvolen p. 108.

  • BUURMAN P. ‒ NIEROP K.G.J. – KAA L.J. ‒ SENESI N. 2009. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source. In Geoderma vol. 150 no. 1‒2 pp. 10‒22.

  • DEBSKA B. ‒ SOMBATHOVA N. ‒ BANACH-SZOTT M. 2009. Properties of humic acids of soil under different management regimes. In Polish Journal of Soil Science vol. 42 pp. 131‒138.

  • ENEV V. – POSPÍŠILOVÁ L. – KLUČÁKOVÁ M. – LIPTAJ T. – DOSKOČIL L. 2014. Spectral characterization of selected humic substances. In Soil and Water Research vol. 9 pp. 9‒17.

  • GONZÁLES-PÉREZ M. – TORRADO V.P. – COLNAGO L.A. ‒ MARTIN-NETO L. – OTERO X.L. – MILORI D.M.B.P. – GOMES F.H. 2008. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil. In Geoderma vol. 146 pp.425‒433.

  • HAYES M.B.H. 1985. Extraction of humic substances from soils. In AIKEN G.R. ‒ WERSHAW R.L. ‒ McKNIGHT D.M. – McCARTHY P. (Eds.) Humic substances in soil sediment and water. New York : John Wiley N.Y. pp. 329‒362.

  • KULICH J. – VALKO J. – OBERNAUER D. 2001. Perspektíva využitia alginitu vo výžive rastlín [Perspective of exploatation of alginite in plant nutrition]. In Journal of Central European Agriculture vol. 2 pp.199‒206.

  • LITAVEC T. – BARANČÍKOVÁ G. 2013. Základná charakteristika alginitu (Basic characteristic of alginit). In HOUŠKOVÁ B. (Ed.) Vedecké prácePOP vol. 35 Bratislava : VÚPOP pp. 97‒106. ISBN 978-80-8163-003-3.

  • MADRONOVA L. 2011. Humic substances from raw materials of the Czech Republic. New York : Nova Science Publishers Inc. pp. 123. ISBN 978-1-61668-965-0.

  • MALCOLM M.L. 1990. The uniqueness of humic substances in each of soil stream and marine environments. In Analytica Chimica Acta vol. 232 pp.19‒30.

  • MAO J. ‒ OLK D.C. ‒ FANG X. ‒ HE Z. ‒ SCHMIDT-ROHR K. 2008. Influence of animal manure applicatioín on the chemical structures of soil organic mater as investigated by advanced solid-state NMR and Ft-IR spectroscopy. In Geoderma vol. 146 no. 1‒2 pp. 353‒362.

  • ONO K. ‒ HIRAI K.B. ‒ MORITA S. ‒ OHSE K. ‒ HIRADATE S. 2009. Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: Evaluations of chemical composition changes by 13C NMR and their decomposition rates from litterbag experiment. In Geoderma vol. 151 pp. 351‒356.

  • ORLOV D.S 1985. Humus acids of soils. Moscow : University Press Moscow pp. 334.

  • ORLOV D.S. ‒ GRIŠINA L.A. 1981. Praktikum po chimiji gumusa [Practical training of humus chemitry]. Moscow : University Press Moscow pp. 270.

  • PRESTON C.M. – NEWMAN R.H. – ROTHER P. 1994. Using 13C CPMAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. In Soil Science vol. 157 no. 1 pp. 26‒35.

  • PRESTON C.M. 1996. Application of NMR to soil organic matter analysis: History and prospects. In Soil Science vol. 161 no. 3 pp. 144‒166.

  • ROSSELL R.A. ‒ ANDRIULO A.E. ‒ SCHNITZER M. ‒ CRESPO M.B. ‒ MIGLIERINA A.M 1989. Humic acids properties on an Argiudoll soil under two tillage systems. In Science of Total Environment vol. 81/82 pp. 391–400.

  • SANCHEZ-MONEDERO M.A. ‒ MONDINI C. ‒ DE NOBILI M. ‒ LEIRA I. ‒ ROIG A. 2002. Land application of biosolids: Soil response to difference stabilization degree of the traced organic matter. In Waste Management vol. 24 no. 4 pp. 325‒332.

  • SCHNITZER M. ‒ MCARTHUR D.F.E. ‒ SCHULTEN H-R. ‒ KOZAK L.M. ‒ HUANG P.M. 2006. Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils. In Geoderma vol. 130 no.1‒2 pp. 141‒156.

  • SOLTI G. 1987. Az Alginit [The alginite]. Budapest : A Magyar Állami Földtani Intézet Alkalmi Kiadványa 40 p.

  • STEELING C. 1985. Implications of elemental characteristics of humic substances. In AIKEN G.R. ‒ MCKNIGHT M. ‒ WERSHAW R.L. ‒ MACCARTHY P. (Eds) Humic Substances in Soil Sediment and Water. Geochemistry Isolation and Characterization. New York : Wiley-Interscience pp. 457‒476.

  • TAN H.K. 2014. Humic mater in soil and the environment. Boca Raton : CRC Press pp. 461 ISBN 978-1-4822-3445-4.

  • VASS D. ‒ KONEČNÝ V. ‒ ELEČKO M. ‒ MILIČKA J. – SNOPKOVÁ P. ‒ ŠUCHA V. ‒ KOZAČ J. ‒ ŠKRABANA R. 1997. Alginit – nový zdroj Slovenského nerudného surovinového potenciálu (ložisko Pinciná) [Alginit – a new source of Slovak non ore resource potential (bearing Pincina)]. In Mineralia Slovaca vol. 29 pp. 1‒39.

Journal information
Impact Factor

CiteScore 2018: 0.81

SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.535

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 106 10
PDF Downloads 127 65 4