Siderophore: Structural And Functional Characterisation – A Comprehensive Review

Open access


Plants and microbes have enormous importance in our daily life. Iron is said to be the fourth most abundant element in the earth's crust from soil, still many plants face problem in uptaking iron because it is found in insoluble form, which severely restricts the bioavailability of this metal. In response to this, microorganisms present in soil such as Pseudomonas sp., Enterobacter genera, Bacillus and Rhodococcus produce special iron carriers or iron-binding compounds called as ‘siderphores’ or ‘siderochromes’. This paper is an attempt to review the importance of siderphores in enhancing plants’ iron utilisation strategies, the mode of transport of siderophores along with iron across the memberane and depending on the difference in their chemical structure, functional moiety and their source of isolation of four different types of siderophore (hydroxamates, catecholates, carboxylates and siderophore with mixed ligand). Siderophore and their derivative have large application in agriculture as to increase soil fertility and as biocontrol for fungal pathogen. This review unlike other reviews includes (1) types of siderophore, (2) the structural difference amongst them, (3) siderophore biosynthesis, (4) transport mechanism, (5) the genetics of siderophore and (6) their efficacy in human life.

ABDALLAH, M.A. 1991. Pyoverdines and pseudobactins. In WILKELMANN, G. (Ed) CRC handbook of microbial iron chelates. Boca Raton, Florida : CRC Press. pp 139–152.

AHMED, E. – HOLMSTROM, S.J. 2014. Siderophores in environmental research: roles and applications. In Microbial Biotechnology, vol. 7, no. 3, pp. 196–208.

HAJA, A.R. – MOHIDEENA, V. – THIRUMALAI ARASUC – NARAYANANB, K.R. – ZAHIR HUSSAIND, M.I. 2010. Bioremediation of heavy metal contaminated soil by the exigobacterium and accumulation of Cd, Ni, Zn and Cu from soil environment. In International Journal of Biological Technology, vol. 1, no. 2, pp. 94–101.

ALEXANDER, D.B. – ZUBERERM, D.A. 1991. Use of chrome azurol ‘S regents to evaluate siderophore production by rhizosphere bacteria. In Biology and Fertility of Soils, vol. 12, pp. 39–45.

ALI, S.S. – VIDHALE, N.N. 2013. Bacterial Siderophore and their Application: A review. In International Journal of Current Microbiology Applied Sciences, vol. 2, no. 12, pp. 303–31.

ALI, T. – BYLUND, D. – ESSÉN, S.A. – LUNDSTRÖM, U.S. 2011. Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. In Soil Biology and Biochemistry, vol. 43, pp. 2417–2422.

ASAMUDO, N.U. – DABA, A.S. – EZERONYE, O.U. 2005 Bioremediation of textile effluent using Phanerochaete chrysosporium. In African Journal of Biotechnology, vol. 4, no. 13, pp. 1548–1553.

BARONA, G.F. – LAUTRU, S. – FRANCOU, F.X. – PERNODET, P.L.J.L. – CHALLIS, G.L. 2006. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomycesambofaciens ATCC 23877. In Microbiology, vol. 152, no. 11, pp. 3355–3366.

BEARE, P.A. – FOR, R.J. – MARTIN, L.W. – LAMONT, I.L. 2003. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. In Molecular Microbiology, vol.47, pp. 195–207. DOI: 10.1046/j.1365-2958.2003.03288.x.

BECKER, J.O. – MESSENS, E. – HEDGES, R.W. 1985. The influence of agrobactin on the uptake of ferric iron by plants. In FEMS microbiology letters, vol. 31, no. 3, pp. 171–175. DOI: 10.1111/j.1574-6968.1985.tb01145.x.

BERND, H. – REHM, A. 2008. Biotechnological relevance of Pseudomonads. In BERND, H. – REHM, A. (Eds) Pseudomonas. Model Organism, Pathogen, Cell Factory. Weinheim, Germany : Wiley-VCH Verlag GmbH and Co. KGaA. p. 377. ISBN 978-3-527-31914-5.

BICKEL, H. – BOSSHARDT, R. – GÄUMANN, E. – REUSSER, P. – VISCHER, E. – VOSER, W. – WETTSTEIN, A. – ZÄHNER, H. 1960. Stoffwechselprodukte von Actinomyceten. Über die Isolierung and Characterisierung der Ferrioxamine A-F, neuer Wuchsstoffe der Sideramin-Gruppe. In Helvetica Chimica Acta, vol. 43, pp. 2118–2128. DOI: 10.1002/hlca.19600430731.

BOUBY, M. – BILLARD, I. – MACCORDICK, J. 1998. Complexation of Th (IV) with the siderophore pyoverdine A. In Journal of Alloys and Compounds, vol. 273, pp. 206–210.

BSAT, N. – HERBIG, A. – CASILLAS-MARTINEZ, L. – SETLOW, P. – HELMANN, J.D. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxidase regulon (PerR) repressors. In Molecular Microbiology, vol. 29, pp.189–198.

BUSS, H.L. – LUTTGE, A. – BRANTLEY, S.L. 2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. In Chemical Geology, vol. 240, pp. 326–342. DOI:10.1016/j.chemgeo.2007.03.003.

BUYER J.S. – LORENZO, V.DE. – NEILANDS, J.B. 1991. Production of the siderophore aerobactin by a halophilic Pseudomonad. In Applied and Enviromental Microbiology, vol. 57, no. 8, pp. 2246–2250.

BUYSENS, S. – HEUNGENS, K. – POPPE, J. – HOFTE, M. 1996. Involvement of Pyochelin and pioverdin in suppression of Pseudomonas aeruginosa 7NSK2. In Applied and Environmental Microbiology, vol. 62, no. 3, pp. 865–871.

BUYSENS, S. – HEUNGENS, K. – POPPE, J. – HOFTE, M. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. In Applied and Environmental Microbiology, vol. 62, no. 3, pp. 865–871.

CASTIGNETTI, D. – SMARRELLI, J.R. 1986. Siderophores, the iron nutrition of plants, and nitrate reductase. In Federation of European Biochemical Societies (FEBS) Letter, vol. 209, pp. 147–151.

CHALLIS, G.L. 2005. Widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. In ChemBioChem, vol.6, pp. 601–611. DOI: 10.1002/cbic.200400283.

CHUA, A.C. – INGRAM, H.A. – RAYMOND, K.N. – BAKER, E. 2003. Multidentate pyridinones inhibit the metabolism of nontransferrin-bound iron by hepatocytes and hepatoma cells. In European Journal of Biochemistry, vol. 270, pp. 1689–1698.

CLINE, G.R. – POWELL, P.E. – SZANISZLO, P.J. – REID, C.P.P. 1982. Comparison of abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other irons in nutrient solution. In Soil Science Society of America Journal, vol. 46, pp. 1158–1164.

CORBIN, J.L. – BULEN, W.A. 1969. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di(2,3-dihydroxy benzoy1)-L-lysine formed by iron-deficient Azotobacter. In Biochemistry, vol. 8, pp. 757–762.

CORNISH, A.S. – PAGE, W.J. 1995. Production of the tri catecholate siderophore protochelin by Azotobacter-vinelandii. In BioMetals, vol. 8, pp. 332–338.

CORNISH, A.S. – PAGE, W.J. 1998. The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. In Microbiology, vol. 144, no. 7, pp. 1747–1754.

COULTON, J.W. – MASON, P. – CAMERON, D.R. – CARMEL, G. – JEAN, R. – RODE, H.N. 1986. Protein fusions of beta-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. In Journal of Bacteriology, vol. 165, no. 1, pp. 181–92.

CROSA, J.H. – WALSH, C.T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. In Microbiology and Molecular Biology Reviews, vol. 66, pp. 223–249.

CUNLIFFE, H.E. – MERRIMAN, T.R. – LAMONT, I.L. 1995. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. In Journal of Bacteriology, vol. 177, pp. 2744–2750.

DE LORENZO, V. – NEILANDS, J.B. 1986. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. In Journal of Bacteriology, vol. 167, pp. 350–355.

DE VOSS, J.J. – RUTTER, K. – SCHROEDER, B.G. – BARRY III, C.E. 1999. Iron acquisition and metabolism by mycobacteria. In Journal of Bacteriology, vol. 181, pp. 4443–4451.

DRECHSEL, H. – JUNG, G. – WINKELMANN, G. 1992. Stereochemical characterization of rhizoferrin and identification of its dehydration products. In Bio-Metals, vol. 5, pp.141–148.

GARBISU, C. – ALKORTA, I. 1997. Bioremediation: principles and future. In Journal of Clean Technology, Environmental Toxicology and Occupational Medicine, vol. 6, no. 4, pp. 351–366.

GARBISU, C. – GONZÁLEZ, S. – YANG, W.H. 1995. Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis. In BioFactors, vol. 5, no. 1, pp. 29–37.

GREGORY, J.A. – LI, F. – TOMOSADA, L.M. – COX, C.J. 2012. Topol AB, Algae – produced Pfs25 elicits antibodies that inhibit malaria transmission. In PLoS ONE, vol. 7, no. 5, pp. 371–379. DOI:10.1371/journal.pone.0037179.

GYSIN, J. – CRENN, Y. – PEREIRA, DA S. – LUIZ – BRETON, C. 1991. Siderophores as anti parasitic agents. US patent 5, pp.192–807.

HALL, H.K. – FOSTER, J.W. 1996. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. In Journal of Bacteriology, vol. 178, pp. 5683–5691.

HAMDAN, H. – WELLER, D. – THOMASHOW, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. Tritici by Pseudomonas fluorescens 2-79 and M4-80R. In Applied and Environmental Microbiology, vol. 57, no. 11, pp. 3270–3277.

HANS, P.F. – KRASTEL, P. – MULLER, J. – GEBHARDT, K. – ZEECK, A. 2001. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. In FEMS Microbiology Letters, vol. 196, no. 2, pp. 147–151.

HANTKE, K. 2001. Iron and metal regulation in bacteria. In Current Opinion in Microbiology, vol. 4, pp.172–177.

HERSHKO, C. – LINK, G. – KONIJN, A.M. 2002. Cardioprotective effect of iron chelators. In HERSHKO, C. (Ed) Iron Chelation Theraphy. New York : Kluwer Academic / Plenum Publishers. pp. 77–89.

HIDER, R.C. – KONG, X. 2010. Chemistry and biology of siderophores. In Natural Product Reports, vol. 27, no. 5, pp. 637–57.

HOHNADEL, D. – MEYER, J.M. 1988. Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains. In Journal of Bacteriology, vol. 170, pp. 4865–4873.

HUSEN, E. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. In Indonesian Journal of Agricultural Science, vol. 4, no. 1, pp. 27–31.

ISHIMARU, Y. – TAKAHASHI, R. – BASHIR, K. – SHIMO, H. – SENOURA, T. – SUGIMOTO, K. – ONO, K. – YANO, M. – ISHIKAWA, S. – ARAO, T. – NAKANISHI, H. – NISHIZAWA, N.K. 2012. Characterizing the role of rice in manganese, iron and cadmium transport. In Scientific reports, vol. 2, pp. 286.

JALAL, M.A.F. – HOSSAIN, M.B. – VANDERHELM, D. – SANDERSLOEHR, J. – ACTIS, L.A. – CROSA, J.H. 1989. Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. In Journal of the American Chemical Society, vol. 111, pp. 292–296.

JALAL, M.A.F. – VAN DER HELM, D. 1991. Isolation and spectroscopic identification of fungal siderophores. CRC Handbook of Microbial Iron Chelates Winkelmann G, CRC Press; Boca Raton, pp. 235–269.

JOHNSON, J.R. – MOSELEY, S.L. – ROBERTS, P.L. – STAMM, W.E. 1988. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. In Infection and Immunity, vol. 56, no. 2, pp. 405–412.

JOSHI, H. – DAVE, R. – VENUGOPALAN, V.P. 2014. Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. In Microbiology, vol. 160, pp. 1393–400. DOI: 10.1099/mic.0.079277-0.

KADI, N. – ARBACHE, S. – SONG, L. – OVES-COSTALES, D. – CHALLIS, G.L. 2008. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-Nsuccinylputrescine. In Journal of the American Chemical Society, vol. 130, pp. 10458–10459.

KANNAHI, M. – SENBAGAM, N. 2014. Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. In Journal of Chemical and Pharmaceutical Research, vol. 6, no. 4, pp.1142–1145.

KLOEPPER, J.W. – LEONG, J. – TEINIZE, M. – SCHROTH, M.N. 1980. Enhanced plant growth by siderophores produced by plantgrowth promoting rhizobacteria. In Nature, vol. 286, pp. 885–886.

KRAEMER, S.M. – CROWLEY, D. – KRETZSCHMAR, R. 2006. Siderophores in plant iron acquisition: Geochemical aspects. In Advances in Agronomy, vol. 91, pp. 1–46. DOI:10.1016/S0065-2113(06)91001-3.

KRAEMER, S.M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. In Aquatic Sciences, vol. 66, pp. 3–18. DOI: 10.1007/s00027-003-0690-5.

LAMONT, I.L. – MARTIN, L.W. 2003. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. In Microbiology, vol. 149, no. 4, pp. 833–842.

LANKFORD, C.E. 1973. Bacterial assimilation of iron. In Reviews in Microbiology, vol. 2, pp. 273–331. DOI: 10.3109/10408417309108388.

LAUTRU, S. – CHALLIS, G.L. 2004. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. In Microbiology, vol. 150, pp. 1629–1636. DOI 10.1099/mic.0.26837-0.

LEDYARD, K.M. – BUTTLER, A. 1997. Structure of putrebactin, a new dihydroxamate siderophore produced by Shewanella putrefaciens. In JBIC Journal of Biological Inorganic Chemistry, vol. 22, pp. 93–97. DOI: 10.1007/s007750050110.

LEHOUX, D. 2000. Genomics of the 35-kb locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. In Federation of European Biochemical Societies, vol. 190, pp. 141–146.

LOPER, J.E. – HENKEL, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. In Applied and Environmental Microbiology, vol. 65, no. 12, pp. 5357–5363.

MAHESHWARI, D.K. 2011. Plant growth promoting rhizobacteria: fundamentals and applications. In MAHESHWARI, D.K. (Ed) Plant Growth and Health Promoting Bacteria. Berlin, Heidelberg : Springer-Verlag. pp. 21–42. ISBN 978-3-642-13612-2.

MANWAR, A.V. – KHANDELWAL, S.R. – CHAUDHARI, B.L. – KOTHARI, R.M. – CHINCHOLKAR, S.B. 2001. Generic technology for assured biocontrol of groundnut infections leading to its yield improvement. In Chemical Weekly, vol. XL VI, no. 26, pp. 157–158.

MARSCHNER, H. – ROMHELD, V. – KISSEL, M. 1986. Different strategies in higher plants in mobilization and uptake of iron. In Journal of Plant Nutrition, vol. 9, pp. 695–713. DOI: 10.1080/01904168609363475.

McGRATh, S.P. – CHAUDRI, A.M. – GILLER, K.E. 1995. Long-term effects of metals in sewage sluge on soils, microorganisms and plants. In Journal of Industrial, vol. 14, no. 2, pp. 94–104. DOI: 10.1007/BF01569890.

McMORRAN, B.J. – KUMARA, H.M.C. – SULLIVAN, K.S. – LAMONT, I.L. 2001. Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonasaeruginosa. In Microbiology, vol. 147, pp. 1517–1524.

McMORRAN, B.J. – MERRIMAN, M.E. – ROMBEL, I.T. – LAMONT, L.T. 1996. Characterisation of the pvdE gene which is required for pyoverdine synthesisin Pseudomonas aeruginosa. In Gene, vol. 176, pp. 55–59.

MENEELY, K.M. – LAMB, A.L. 2007. Biochemical characterization of an FAD-Dependent monooxygenase, the ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. In Biochemistry, vol. 46, pp. 11930–11937.

MERRIMAN, T.R. – MERRIMAN, M.E. – LAMONT, I.L. 1995. Nucleotidesequence of pvdD, a pyoverdine bio-synthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. In Journal of Bacteriology, vol. 177, pp. 252–258.

MEYER, J.M. 2000. Pyoverdines: Pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. In Archives of Microbiology, vol. 174, no. 3, pp. 135–142.

MEYRIER, A. 1999. Urinary tract infection. In SCHRIER, R.W. – COHEN, A.H. – GLASSOCK, R.J. – GRÜNFELD, JP. (Eds) Atlas of diseases of the kidney 2. Oxford : Blackwell Science. ISBN 0-632-04387-3.

MINO, Y. – ISHIDA, T. – OTA, N. – INOUE, M. – NOMOTO, K. – TAKEMOTO, T. – TANAKA, H. – SUGIURA, Y. 1983. Mugineic acid-iron (III) complex:characterization and implication for absorption and transport of iron in gramineous plants. In Journal of the American Chemical Society, vol. 105, pp. 4671–4676. DOI: 10.1021/ja00352a024.

MOSSIALOS, D. – OCHSNER, U. – BAYSSE, C. – CHABLAIN, P. – PIRNAY, J.P. – KOEDAM, N. 2002. Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. In Molecular Microbiology, vol. 45, no. 6, pp.1673–85. DOI: 10.1046/j.1365-2958.2002.03120.x.

MUNEES, A. – MULUGETA, K. 2014. Mechanisms and applications of plant growth promoting rhizobacteria. In Current perspective Journal of King Saud University – Science, vol. 26, pp. 1–20.

MUNZINGER, M. – TARAZ, K. – BUDZIKIEWICZ, H. 1999. SS-rhizoferrin (enantio-rhizoferrin) – a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297 – the optical antipode of R, R-rhizoferrin isolated from fungi. In BioMetals, vol. 12, pp. 189–193.

NADIA, K. – CHALLIS, G.L. 2009. Complex enzymes in microbial natural product biosynthesis. In Methods in Enzymology, vol. 458, pp. 431–435.

NEILANDS, J.B. 1952. A crystalline organo-iron pigment from a rust fungus (Ustilagosphaerogena). In Journal of the American Chemical Society, vol. 74, no. 19, pp. 4846–4847.

NEILANDS, J.B. 1981. Iron absorption and transport in microorganisms. In Annual Review of Nutrition, vol. 1, pp. 27–46. DOI: 10.1146/

NEILANDS, J.B. 1982. Microbial iron transport comounds. In Annual Review of Microbiology, vol. 36, pp. 285–309. DOI: 10.1146/annurev.mi.36.100182.001441.

NEILANDS, J.B. 1995. Siderophores: Structure and function of microbial iron transport compounds. In The Journal of Biological Chemistry, vol. 270, no. 45, pp. 26723–26726. DOI:10.1074/jbc.270.45.26723.

O’BRIEN, I.G. – COX, G.B. – GIBSON, F. 1970. Biologically active compounds containing 2, 3-dihydroxybenzoic acid and serine formed by Escherichia coli. In Biochimica et Biophysica Acta (BBA), vol. 201, no. 3, pp. 453–60. DOI:10.1016/0304-4165(70)90165-0.

O’SULLIVAN, D.J. – O’GARA, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. In Microbiological Reviews, vol. 56, no. 4, pp. 662–676. DOI: 0146-0749/92/040662-15$02.00/0.

PAGE, W. – TIGERSTROM, V.M. 1988. Aminochelin, a catecholamine siderophore produced by Azotobacter-vinelandii. In Journal of General Microbiology, vol. 134, pp. 453–460. DOI: 10.1099/00221287-134-2-453.

PIETRANGELO, A. 2002. Mechanism of iron toxicity. In HERSHKO, C. (Ed) Iron Chelation Theraphy. New York : Kluwer Academic / Plenum Publishers, vol. 509, pp. 19–43.

POLLACK, J.R. – NEILANDS, J.B. 1970. Iron transport in Salmonella typhimurium: Mutants blocked in the Biosynthesis of Enterobactin. In Journal of Bacteriology, vol. 104, no. 2, pp. 635–639.

POOLE, K. – NESHAT, S. – KREBES, K. – HEINRICHS, D.E. 1993. Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. In Journal of Bacteriology, vol. 175, no. 15, pp. 4597–4604.

PRESSLER, U. – STAUDENMAIER, H. – ZIMMERMANN, L. – BRAUN, V. 1988. Genetics of the iron dicitrate transport system of Escherichia coli. In Journal of Bacteriology, vol. 170, pp. 2716–2724.

RAVEL, J. – CORNELIS, P. 2003. Genomics of pyoverdine – mediated iron uptake in pseudomonads. In Trends in Microbiology, vol. 11, pp. 195–200. DOI: 10.1111/j.1365-2958.2008.06223.x.

RAYMOND, K.N. – EMILY, A.D. – SANGGOO, S.K. 2003. Enterobactin: An archetype for microbial iron transport. In Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3584–3588. DOI:10.1073/pnas.0630018100.

REICHARD, P.U. – KRAEMER, S.M. – FRAZIER, S.W. – KRETZSCHMAR, R. 2005. Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. In Plant Soil, vol. 276, pp. 115–132.

RENSHAW, J.C. – ROBSON, G.D. – TRINCI, A.P.J. – WIEBE, M.G. – LIVENS, F.R. – COLLISON, D. – TAYLOR, R.J. 2002. Fungal siderophores: structures, functions and applications. In Mycological Research, vol. 106, pp. 1123–1142.

ROMBEL, I.T. – LAMONT, I.L. 1992. DNA homology between siderophore genes from fluorescent pseudomonads. In Journal of General Microbiology, vol. 138, no. 1, pp. 181–187. DOI: 10.1099/00221287-138-1-181.

RUGGIERO, C.E. – NEU, M.P. – MATONIC, J.H. – REILLY, S.D. 2000. Interactions of Pu with desferrioxamine siderophores can affect bioavailability and mobility. In Actinide Research Quarterly, 2nd/3rd Quarter, pp. 16–18.

SCHALK, I.J. – HANNAUER, M. – BRAUD, A. 2011. Minireview new roles for bacterial. In Enviromental Microbiology, vol. 13, no. 11, pp. 2844–54.

SCHALK, I.J. – HENNARD, C. – DUGAVE, C. – POOLE, K. – ABDALLAH, M.A. – PATTUS, F. 2001. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. In Molecular Microbiology, vol. 39, no. 2, pp. 351–60. DOI: 10.1046/j.1365-2958.2001.02207.x.

SCHWYN, B. – NEILANDS, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. In Analytical Biochemistry, vol. 160, no. 1, pp. 47–56. DOI:10.1016/0003-2697(87)90612-9.

SEUK, C. – PAULITA, T. – BAKER, R. 1988. Attributes associate with increased bio-control activity of fluorescent Pseudomonads. In Journal of Plant Pathology, vol. 4, no. 3, pp. 218–225.

SHARMA, A. – JOHRI, B.N. – SHARMA, A.K. – GLICK, B.R. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). In Soil Biology and Biochemistry, vol. 35, no. 7, pp. 887–894.

SHIRVANI, M. – NOURBAKHSH, F. 2010. Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite. In Applied Clay Science, vol. 48, pp. 393.

SIMON, D. – LYTTON, B.M. – LZAC, D. – GLICKSTEIN, H. – JACQUELINE, L. – SHANZER, A. – CABANTCHIK, Z.L. 1993. Mode of action of iron (III) chelators as antimalarials. In Membrane Permeation Properties and Cytotoxic Activity Blood, vol. 81, no. 1, pp. 214–221.

STEPHAN, U.W. – SCHMIDKE, I.V. – STEPHAN, W. – SCHOLZ, G. 1996. The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. In Biometals, vol. 9, pp. 84–90.

STEPHEN, J. – LANE, P.S. – MARSHALL, R.J. – UPTON, C. 1998. Isolation and characterization of carboxy mycobactins as the second extracellular siderophores in Mycobacterium smegmatis. In Biometals, vol. 11, no. 1, pp. 13–20.

STINTZI, A. – BARNES, C. – XU, J. – KENNETH, N. 2000. Raymond microbial iron transport via a siderophore shuttle: A membrane ion transport paradigm. In PNAS (Proceedings of the National Academy of Science), vol. 97, no. 20, pp. 10691–10696, DOI:10.1073/pnas.200318797.

TAKAGI, S. 1976. Naturally occurring iron-chelating compounds in oat and rice-root washings: activity measurement and preliminary characterizations. In Soil Science and Plant Nutrition, vol. 22, pp. 423–433.

THIEKEN, A. – WINKELMANN, G. 1992. Rhizoferrin: a complexone type siderophore of the Mucorales and entomophthorales (Zygomycetes). In Federation of European Biochemical Societies Microbiol Letters vol. 73, pp. 37–41.

VAN DER LELIE, D. – CORBISIER, P. – DIELS, L. 1999. The role of bacteria in the phytoremediation of heavy metals. In TERRY, N. – BANUELOS, E. (Eds) Phytoremediation of Contaminated Soil and Water. Lewis Publisher, USA. pp. 265–281. ISBN 1-56670-450-2.

VANDENBERGH, P.A. – GONZALEZ, C.F. 1984. Method for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida, United States Patent Number: 4, 479, 936.

VANSUYT, G. – ROBIN, A. – BRIAT, J.F. – CURIE, C. – LEMANCEAU, P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. In Molecular Plant-Microbe Interactions, vol. 20, no. 4, pp. 441–447.

VARMA, A. – PODILA, G.K. 2005. Siderophore their biotechnological application. In Biotechnological Applications of Microbes, pp. 177–199.

VERMA, V.C. – SINGH, S.K. – PRAKASH, S. 2011. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. In Journal of Basic Microbiology, vol. 51, pp. 550–556. DOI: 10.1002/jobm.201000155.

VISCA, P. – CIERVO, A. – ORSI, N. 1994. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdine biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. In Journal of Bacteriology, vol. 176, pp. 1128–1140.

VON GUNTEN, H.R. – BENES, P. 1995. Speciation of radionuclides in the environment. In Radiochimica Acta, vol. 69, pp. 1–29.

WALSH, C.T. – JUN, L. – RUSNAK, F. – SAKAITANI, M. 1990. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. In Chemical Reviews, vol. 90, no. 7, pp. 1105–1129.

WANG, P. – MORI, T. – KOMORI, K. – SASATSU, M. – TODA, K. – OHTAKE, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. In Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1665–1669.

WANG, P. – MORI, T. – KOMORI, K. – SASATSU, M. – TODA, K. – OHTAKE, H. 1989. Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. In Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1665–1669.

WANG, Q. – XIONG, D. – ZHAO, P. – YU, X. – TU, B. – WANG, G. 2011. Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. In Journal of Applied Microbiology, vol. 111, pp. 1065–1074.

WARD, T.R. – REAS, L. – SERGE, P. – PAREL, J.E. – PHILIPP, G. – PETER, B. – CHRIS, O. 1999. An iron-based molecular redox switch as a model for iron release from enterobactin via the salicylate binding mode. In Inorganic Chemistry, vol. 38, no. 22, pp. 5007–5017.

WENDENBAUM, S. – DEMANGE, P. – DELL, A. – MEYER, J.M. – ABDALLAH, M.A. 1983. The structure of pyoverdine Pa, the siderophore of Pseudomonas aeruginosa. In Tetrahedron Letters, vol. 24, no. 44, pp. 4877–4880.

WHO Model List of Essential Medicines. World Health Organization. October, 2013. Retrieved 22 April 2014.

WINKELMANN, G. 1991. Specificity of iron transport in bacteria and fungi. In WINKELMANN, G. (Ed). Handbook of microbial iron chelates. Boca Raton : Fla: CRC Press. pp. 65–106.

WITTMANN, S. – HEINISCH, L. – SCHERLITZ-HOFMANN, I.N.A. – STOIBER, T. – DOROTHE, A.F. – MÖLLMANN, U. 2001. Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria. In Biometals, vol. 17, pp. 53–64.

YADAV, S. – KAUSHIK, R. – SAXENA, A.K. – ARORA, D.K. 2011. Diversity and phylogeny of plant growth promoting bacilli from moderately acidic soil. In Journal of Basic Microbiology, vol. 51, pp. 98–106.

ZAHNER, H. – KELLER-SCHIERLEIN, W. – HÜTTER, R. – HESS-LESINGER, K. – DEER, A. 1963. Stoffwechselprodukte von Mikroorganismen. Sideramineaus Aspergillacaeen. In Archives of Microbiology, vol.45, vol. 119–135.

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

Journal Information

CiteScore 2018: 0.81

SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 689 477 21
PDF Downloads 305 247 10