Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (phaseolus vulgaris l.)

Open access

Abstract

Plant Growth-Promoting Rhizobacterium (PGPR) represents a wide variety of soil bacteria that, when grown in association with a host plant, result in stimulation of growth of their host. The aim of this study was to investigate the influence of inoculation with a PGPR, Pseudomonas fluorescence, alone or in combination with an arbuscular mycorrhizal fungus, Glomus mosseae (Nicol. & Gerd.), on antioxidant enzyme activities (catalase (CAT) and peroxidase (POX)), phosphatase activity, solutes accumulation, growth and minerals nutrient uptake in shoots of bean (Phaseolus vulgaris L.) affected by three levels of salt stress. Salinity decreased bean growth, regardless of the biological treatment and the salt stress level. The plants inoculated with P. fluorescence had significantly greater shoot biomass than the control plants at all salinity levels, whereas the mycorrhizal inoculation treatments were only effective in increasing shoot biomass at a low salinity level. The plants inoculated with P. fluorescence presented higher concentrations of shoots’ K+ and lower concentrations of shoots’ Na+ under high salt conditions. Salt stress increased shoots’ proline concentration, particularly in plants inoculated with the PGPR. Increasing salinity stress raised significantly the antioxidant enzyme activities, including those of total POX and CAT, of bean shoots compared with their corresponding nonstressed plants. The PGPR strain induced a higher increase in these antioxidant enzymes in response to severe salinity. Inoculation with selected PGPR could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.

References

  • AEBI, H. 1984. Catalase in vitro. In Methods in Enzymology, vol. 105, pp. 121-126.

  • ASHRAF, M. - BERGE, S.H. - MAHMOOD, O.T. 2004. Inoculating wheat seedlings with exopolysaccharide- producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. In Biology and Fertility of Soils, vol. 40, pp. 157-162. DOI 10.1007/ s00374-004-0766-y.

  • AUGÉ, R.M. 2001. Water relations, drought and vesicular- arbuscular mycorrhizal symbiosis. In Mycorrhiza, vol. 11, no. 1, pp. 3-42.

  • BATES, L.S. - WALDREN, R.P. - TEARE, I.D. 1973. Rapid determination of free proline for water stress studies. In Plant and Soil, vol. 39, no. 1, pp. 205-207.

  • BLIGH, E.G. - DYER, W.J. 1959. A rapid method of total lipid extraction and purification. In Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 91 1-917.

  • CARAVACA, F. - FIGUEROA, D. - BAREA, J.M. - AZCÓN-AGUILAR, C. - ROLDÁN, A. 2004. Effect of mycorrhizal inoculation on the nutrient content, gas exchange and nitrate reductase activity of Retama sphaerocarpa and Olea europaea subsp. sylvestris under drought stress. In Journal of Plant Nutrition, vol. 27, pp. 57-74. DOI:10.1081/PLN-120027547.

  • DUFF, S.M.G. - SARATH, G. ‒ PLAXTON, W.C. - 1994. The role of acid phosphatases in plant phosphorus metabolism. In Physiology Plantarum, vol. 90, pp. 791-800. DOI: 10.1 111/j.1399-3054.1994.tb02539.x.

  • EHSANPOUR, A.A. - AMINI, F. 2003. Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. In African Journal of Biotechnology, vol. 2, pp. 133-135.

  • GIOVANNETTI, M. - MOSSE, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. In New Phytologist, vol. 84, no. 3, pp. 489-500. DOI: 10.1111/j.1469-8137.1980.tb04556.x.

  • GIRI, B. - KAPOOR, R. - MUKERJI, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhizal, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. In Microbial Ecology, vol. 54, no. 4, pp. 753-760. DOI: 10.1007/s00248-007-9239-9.

  • GIRI, B. - MUKERJI, K.G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. In Mycorrhiza, vol. 14, pp. 307-312.

  • GLICK, B.R. - LIU, C. - GHOSH, S. - DUMBROF, E.B. - 1998. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. In Soil Biology and Biochemistry, vol. 29, no. 8, pp. 1233-1239.

  • GOICOECHEA, N. - MERINO, S. - SÁNCHEZ-DÍAZ, M. 2005. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. In Journal of Plant Physiology, vol. 162, no. 1, pp. 27-35. DOI:10.1016/j.jplph.2004.03.01 1.

  • HANTNGSTON, T.G. - SMITH, M.S. - THOMAS, G.W. - BLEVINS, R.L. -PEREZ, A. 1986. Responses of Phseolus vulgaris to inoculation with Rhizobium phaseoli under two tillage systems in the Dominican Republic. In Plant and Soil, vol. 95, pp. 77-85.

  • HERNANDEZ, J.A. - AGUILAR, A. - PORTILO, B. - LOPEZ-GOMEZ, E. - MATAIZ BENEYTO, J. - GARCIALEGAZ, MF. 2003. The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. In Functional Plant Biology, vol. 30, pp. 1 127-1137.

  • HOQUE, M.A. - OKUMA, E. - BANU, M.N.A. - NAKAMURA, Y. - SHIMOISHI, Y. - MURATA, Y. 2007. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. In Journal of Plant Physiology, vol. 164, no. 5, pp. 553-561. DOI:10.1016/j.jplph.2006.03.010.

  • IBRAHIM, M.A. - CAMPBELL, W.F. - RUPP, L.A. - ALLEN, E.B. 1990. Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. In Arid Soil Research and Rehabilitation, vol. 4, pp. 99-107.

  • IRIGOYEN, J.J. - EMERICH, D.W. - SÁNCHEZ-DÍAZ, M. 1992.Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. In Physiologia Plantarum, vol. 84, no. 1, pp. 55‒60. DOI: 10.1111/ j.1399-3054.1992.tb08764.x.

  • JEFFRIES, P. - GIANINAZZI, S. - PEROTTO, S. - TURNAU, K. - BAREA, J.M. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. In Biology and Fertility of Soils, vol. 37, no. 1, pp. 1-16. DOI: 10.1007/s00374-002-0546-5.

  • KIM, S.Y. - LIM, J.H. - PARK, M.R. - KIM, Y.J. - PARK, T.I.I. - SEO, Y.W. - CHOI, K.G. - YUN, S.J. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under salt stress. In Journal of Biochemistry and Molekular Biology, vol. 38, pp. 218-224.

  • KOHLER, J. - CARAVACA, F. - CARRASCO, L. - ROLDÁN, A. 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilisation and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. In Soil Use Management, vol. 22, no. 3, pp. 298-304. DOI: 10.1111/j.1475-2743.2006.00041.x.

  • LAX, A. - DÍAZ, E. - CASTILLO, V. - ALBALADEJO, J. 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. In Arid Soil Research and Rehabilitation, vol. 8, pp. 9-17.

  • LEE, G. - CARROW, R.N. - DUNCAN, R.R. - EITEMAN, M.A. - RIEGER, M.W. 2008. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. In Environmental and Experimental Botany, vol. 63, no. 1-3, pp. 19-27. DOI:10.1016/j.envexpbot.2007.10.009.

  • MÄKELÄ, P. - KÄRKKÄINEN, J. - SOMERSALO, S. 2000. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. In Biologia Plantarum, vol. 43, no. 3, pp. 471-475. MAYAK, S. - TIROSH, T. - GLICK, B.R. - 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. In Plant Physiology and Biochemistry, vol. 42, no. 6, pp. 565-572. DOI:10.1016/j. plaphy.2004.05.009.

  • MIKE, F. - QUARTACCI, M.G. - NAVARI-IZZO, F. 1992.Water stress and free radical mediated changes in sunflower seedlings. In Journal of Plant Physiology, vol. 139, no. 5, pp. 621-626.

  • MURPHY, J. - RILEY, J.P. - 1962. A modified single solution method for determination of phosphate in natural waters. In Analytica Chimica Acta, vol. 27, pp. 31-36.

  • OLMOS, E. - HELLIN, E. 1997. Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisum sativum. In Journal of Experimental Botany, vol. 48, pp. 1529-1535.

  • PARIDA, A.K. - DAS, A.B. 2005. Salt tolerance and salinity effects on plants: a review. In Ecotoxicology and Environmental Safety, vol. 60, pp. 324-349. DOI:10.1016/j.ecoenv.2004.06.010.

  • PHILLIPS, J.M. - HAYMAN, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection. In Transaction of the British Mycological Society, vol. 55, no. 1, pp. 158-161.

  • QUEREJETA, J.I. - BAREA, J.M. - ALLEN, M.F. - CARAVACA, F. - ROIDAN, A. 2003. Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. In Oecologia, vol. 135, pp. 510-515. DOI: 10.1007/s00442-003-1209-4.

  • QUIROGA, M. - GUERRERO, C. - BOTELLA, M.A. - BARCELÓ, A.R. - MEDINA, M.I. - ALONSO, F.J. 2000.A tomato peroxidase involved in the synthesis of lignin and suberin. In Plant Physiology, vol. 122, pp. 1 119-1127.

  • ROS-BARCELÓ, A. - GÓMEZ-ROS, L.V. - FERRER, M.A. - HERNÁNDEZ, J.A. 2006. The apoplastic antioxidant enzymatic systeminthewood-forming tissues of trees. In Trees-Structure and Function, vol. 20, no. 2, pp. 145-156. DOI 10.1007/s00468-005-0020-8.

  • ROS-BARCELÓ, A. 1998. The generation of H2O2 in the xylemof Zinnia elegans ismediated by an NADPH-oxidase-like enzyme. In Planta, vol. 207, pp. 207-216.

  • RUIZ-LOZANO, J.M. - AZCÓN, R. 1996. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. In Agriculture Ecosystem & Environment, vol. 60, no. 2-3, pp. 175-181.

  • RUIZ-LOZANO, J.M. - AZCÓN, R. 2000. Symbiotic effi- ciency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. In Mycorrhiza, vol. 10, pp. 137-143.

  • SARAVANAKUMAR, D. - SAMIYAPPAN, R. 2007. ACC deaminase from Pseudomonas fluorescensmediated saline resistance in groundnut (Arachis hypogea) plants. In Journal of Applied Microbiology, vol. 102, pp. 1283-1292.

  • SCANDALIOS, J.G. - GUAN, L. - POLIDORDS, A.N. 1997. Catalases in plants: gene structure, proprieties, and expression. In SCANDALIOS, J.G. (Ed.) Oxidative stress and the Molecular Biology of Antioxidant Defences. Cold Spring Harbor : New York, pp. 343-406.

  • SCHELLENBAUM, L. - MÜLLER, J. - BOLLER, T. - WIENKEN, A. - SCHÜEPP, H. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalose, and in the pools of amino acids and imino acids. In New Phytologist, vol. 138, no. 1, pp. 59-66.DOI: 10.1046/j.1469-8137.1998.00892.x.

  • SHARIFI, M. - GHORBANLI, M. - EBRAHIMZADEH, H. 2007. Improved growth of salinity- stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. In Journal of Plant Physiology, vol. 164, no. 9, pp. 1 144-1151. DOI:10.1016/j.jplph.2006.06.016.

  • SHARMA, K.D. - DATTA, K.S. - VERMA, S.K. 1990. Effect of chloride and sulphate type of salinity on some metabolic drifts in chickpea (Cicer arietinum L.). In Indian Journal of Experimental Biology, vol. 28, pp. 890-892.

  • SIEVERDING, E. 1991. Vesicular-arbuscular Mycorrhiza Management in Tropical Agrosystems. Eschborn, Germany : GTZ, pp. 371.

  • SIVRITEPE, N. - SIVRITEPE, H.O. - ERIS, A. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. In Scientia Horticulturae, vol. 97, pp. 229-237.

  • TABATABAI, M.A. - BREMNER, J.M. 1969. Use of p-nitrophenol phosphate in assay of soil phosphatase activity. In Soil Biology and Biochemistry, vol. 1, no. 4, pp. 301-307.

  • TANK, N.D. - SARAF, M.S . 2010. Salinity resistant PGPR ameliorates NaCl stress on tomato plants. In Journal of Plant Interaction, vol. 5, pp. 51-58. DOI:10.1080/17429140903125848.

  • YAZICI, I. - TÜRKAN, I. - SEKMEN, A.H. - DEMIRAL, T. 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. In Environmental and Experimental Botany, vol. 61, pp. 49-57.

Agriculture (Pol'nohospodárstvo)

The Journal of National Agricultural and Food Centre

Journal Information


CiteScore 2016: 0.59

SCImago Journal Rank (SJR) 2016: 0.196
Source Normalized Impact per Paper (SNIP) 2016: 0.360

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 16
PDF Downloads 2 2 2