Cation-containing lipid membranes – experiment and md simulations

Open access

Abstract

Using small angle neutron diffraction and molecular dynamics simulations we studied the interactions between calcium (Ca2+) or zinc (Zn2+) cations, and oriented gel phase dipalmitoyl-phosphatidylcholine (DPPC) bilayers. For both cations studied at ~1:7 divalent metal ion to lipid molar ratio (Me2+:DPPC), bilayer thickness increased. Simulation results helped reveal subtle differences in the effects of the two cations on gel phase membranes.

[1] Allen, W. J., Lemkul, J. A., and Bevan, D. R. GridMAT-MD: a Grid-Based Membrane Analysis Tool for Use With Molecular Dynamics. J.Comput.Chem. 2009;30(12):1952-8.

[2] Alsop, R. J., Maria, Schober R., and Rheinstadter, M. C. Swelling of Phospholipid Membranes by Divalent Metal Ions Depends on the Location of the Ions in the Bilayers. Soft Matter 10-8- 2016;12(32):6737-48.

[3] Castillo, N., Monticelli, L., Barnoud, J., and Tieleman, D. P. Free Energy of WALP23 Dimer Association in DMPC, DPPC, and DOPC Bilayers. Chem.Phys Lipids 2013;169:95-105.

[4] Drolle, E., Kučerka, N., Hoopes, M. I., Choi, Y., Katsaras, J., Karttunen, M., and Leonenko, Z. Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes. Biochimica et Biophysica Acta 2013;1828(9):2247-54.

[5] Fitter, J., Neutron scattering in biology: Techniques and applicationsSpringer-Verlag; 2006.(Gutberlet, T.; Katsaras, J.

[6] Greenspan, Lewis. Humidity Fixed Points of Binary Saturated Aqueous Solutions. JOURNAL OF RESEARCH of the National Bureau of Standards - A.Phys ics and Chemistry 1977;81A(1):89-96.

[7] Harroun, Thad A., Kučerka, Norbert, Nieh, Mu Ping, and Katsaras, John. Neutron and X-Ray Scattering for Biophysics and Biotechnology: Examples of Self-Assembled Lipid Systems. Soft Matter 2009;5(14):2694-703.

[8] Ingolfsson, H. I., Melo, M. N., van Eerden, F. J., Arnarez, C., Lopez, C. A., Wassenaar, T. A., Periole, X., de Vries, A. H., Tieleman, D. P., and Marrink, S. J. Lipid Organization of the Plasma Membrane. J.Am.Chem.Soc. 15-10-2014;136(41):14554-9.

[9] Katsaras, J. Adsorbed to a Rigid Substrate, Dimyristoylphosphatidylcholine Multibilayers Attain Full Hydration in All Mesophases. Biophys.J. 1998;75(5):2157-62.

[10] Kučerka, N., Heberle, F. A., Pan, J., and Katsaras, J. Structural Significance of Lipid Diversity As Studied by Small Angle Neutron and X-Ray Scattering. Membranes (Basel) 2015a;5(3):454-72.

[11] Kučerka, N., Katsaras, J., and Nagle, J. F. Comparing Membrane Simulations to Scattering Experiments: Introducing the SIMtoEXP Software. Journal of Membrane Biology 2010;235(1):43-50.

[12] Kučerka, N., Nagle, J. F., Sachs, J. N., Feller, S. E., Pencer, J., Jackson, A., and Katsaras, J. Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data. Biophys.J. 2008a;95(5):2356-67.

[13] Kučerka, N., Nieh, M. P., Pencer, J., Sachs, J. N., and Katsaras, J. What Determines the Thickness of a Biological Membrane. Gen. Physiol Biophys. 2009;28(2):117-25.

[14] Kučerka, N., Papp-Szabo, E., Nieh, M. P., Harroun, T. A., Schooling, S. R., Pencer, J., Nicholson, E. A., Beveridge, T. J., and Katsaras, J. Effect of Cations on the Structure of Bilayers Formed by Lipopolysaccharides Isolated From Pseudomonas Aeruginosa PAO1. J.Phys Chem.B 10-7-2008b;112(27):8057-62.

[15] Kučerka, N., van Oosten, B., Pan, J., Heberle, F. A., Harroun, T. A., and Katsaras, J. Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained From Simulationto- Experiment Comparisons and Experimental Scattering Density Profiles. The Journal of Physical Chemistry B 5-2- 2015b;119(5):1947-56.

[16] Kučerka, N., Dushanov, E., Kholmurodov, K. T., Katsaras, J., and Uhrikova, D. Calcium and Zinc Differentially Affect the Structure of Lipid Membranes. Langmuir 2017;33:3134-3141.

[17] Marquardt, D., Kučerka, N., Wassall, S. R., Harroun, T. A., and Katsaras, J. Cholesterol’s Location in Lipid Bilayers. Chem.Phys Lipids 2016;199:17-25.

[18] Marquardt, D., Williams, J. A., Kučerka, N., Atkinson, J., Wassall, S. R., Katsaras, J., and Harroun, T. A. Tocopherol Activity Correlates With Its Location in a Membrane: a New Perspective on the Antioxidant Vitamin E. J.Am.Chem.Soc. 22-5-2013;135(20):7523-33.

[19] Marquardt, Drew; Harroun, Thad A. Locations of Small Biomolecules in Model Membranes. Liposomes, Lipid Bilayers and Model Membranes.CRC Press; 19-2-2014. pp.199-216.

[20] Mihailescu, M., Vaswani, R. G., Jardon-Valadez, E., Castro-Roman, F., Freites, J. A., Worcester, D. L., Chamberlin, A. R., Tobias, D. J., and White, S. H. Acyl-Chain Methyl Distributions of Liquid-Ordered and -Disordered Membranes. Biophys.J. 16-3-2011;100(6):1455-62.

[21] Nagle, J. F., Akabori, K., Treece, B. W., and Tristram-Nagle, S. Determination of Mosaicity in Oriented Stacks of Lipid Bilayers. Soft Matter 14-2-2016;12(6):1884-91.

[22] Nagle, J. F. and Tristram-Nagle, S. Structure of Lipid Bilayers. Biochimica et Biophysica Acta 10-11-2000;1469(3):159-95.

[23] Pabst, G., Hodzic, A., Strancar, J., Danner, S., Rappolt, M., and Laggner, P. Rigidification of Neutral Lipid Bilayers in the Presence of Salts. Biophys.J. 15-10-2007a;93(8):2688-96.

[24] Pabst, G., Hodzic, A., Strancar, J., Danner, S., Rappolt, M., and Laggner, P. Rigidification of Neutral Lipid Bilayers in the Presence of Salts. Biophys.J. 15-10-2007b;93(8):2688-96.

[25] Pabst, G., Kučerka, N., Nieh, M. P., Rheinstadter, M. C., and Katsaras, J. Applications of Neutron and X-Ray Scattering to the Study of Biologically Relevant Model Membranes. Chem.Phys Lipids 2010;163(6):460-79.

[26] Pan, J., Heberle, F. A., Tristram-Nagle, S., Szymanski, M., Koepfinger, M., Katsaras, John, and Kučerka, N. Molecular Structures of Fluid Phase Phosphatidylglycerol Bilayers As Determined by Small Angle Neutron and X-Ray Scattering. Biochimica et Biophysica Acta 2012;1818(9):2135-48.

[27] Pan, J., Tristram-Nagle, S., and Nagle, J. F. Alamethicin Aggregation in Lipid Membranes. Journal of Membrane Biology 2009;231(1):11-27.

[28] Petrache, H. I., Feller, S. E., and Nagle, J. F. Determination of Component Volumes of Lipid Bilayers From Simulations. Biophys.J. 1997;72(5):2237-42.

[29] Petrache, H. I., Tristram-Nagle, S., Harries, D., Kučerka, N., Nagle, J. F., and Parsegian, V. A. Swelling of Phospholipids by Monovalent Salt. J.Lipid Res. 2006;47(2):302-9.

[30] Poger, D., Caron, B., and Mark, A. E. Validating Lipid Force Fields Against Experimental Data: Progress, Challenges and Perspectives. Biochimica et Biophysica Acta 2016;1858(7 Pt B):1556-65.

[31] Tristram-Nagle, S., Chan, R., Kooijman, E., Uppamoochikkal, P., Qiang, W., Weliky, D. P., and Nagle, J. F. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics. J.Mol.Biol. 10-9-2010;402(1):139-53.

[32] Uhrikova, D., Kučerka, N., Lengyel, A., Pullmannova, P., Teixeira, J., Murugova, T., Funari, S. S., and Balgavy, P. Lipid Bilayer - NA Interaction Mediated by Divalent Metal Cations: SANS and SAXD Study. Journal of Physics: Conference Series 2012;351(1):012011.

[33] Uhrikova, D., Kučerka, N., Teixeira, J., Gordeliy, V., and Balgavy, P. Structural Changes in Dipalmitoylphosphatidylcholine Bilayer Promoted by Ca2+ Ions: a Small-Angle Neutron Scattering Study. Chem.Phys Lipids 2008;155(2):80-9.

[34] Valley, C. C., Perlmutter, J. D., Braun, A. R., and Sachs, J. N. NaCl Interactions With Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water. Journal of Membrane Biology 2011;244(1):35-42.

[35] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. GROMACS: Fast, Flexible, and Free. J.Comput.Chem. 2005;26(16):1701-18.

[36] Worcester, D. L. and Franks, N. P. Structural Analysis of Hydrated Egg Lecithin and Cholesterol Bilayers. II. Neutrol Diffraction. J.Mol.Biol. 25-1-1976;100(3):359-78.

[37] Yamada, L., Seto, Hideki, Takeda, Takayoshi, Nagao, Michihiro, Kawabata, Youhei, and Inoue, Katsuaki. SAXS, SANS and NSE Studies on “Unbound State” in DPPC/Water/CaCl2 System. Journal of the Physical Society of Japan 15-10- 2005;74(10):2853-9.

European Pharmaceutical Journal

Acta Facultatis Pharmaceuticae Universitatis Comenianae (formerly)

Journal Information


CiteScore 2017: 0.24

SCImago Journal Rank (SJR) 2017: 0.129
Source Normalized Impact per Paper (SNIP) 2017: 0.140

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 153 20
PDF Downloads 57 57 13