Hydroxycinnamic derivatives content in plant organs linked to harvest time of Salvia officinalis L. cv. ‘Krajová’ / Obsah hydroxyškoricových derivátov v rastlinných orgánoch Salvia officinalis L. cv. ‘Krajová’ v závislosti od termínu zberu

Open access


Salvia officinalis L. (sage) is an important essential oil containing Mediterranean medicinal plant that is commonly cultivated for pharmaceutical uses. In addition to essential oil, other compounds participate on the biological effects of sage, mainly diterpenes, triterpenes and phenolic compounds of the hydroxycinnamic and flavonoid types. Sage essential oil content is known to differ in plant parts, and to be influenced by plant phenophase, climatic and edaphic conditions. This work deals with the study of total hydroxycinnamic derivatives (THD), and specifically rosmarinic acid (RA), content variation in different aerial parts of sage linked to different harvest times. Dry sage leaves (Salviae officinalis folium) THD content was quantified using a pharmacopoeial method, and varied between 3.06 % and 3.52 % in different harvest times, with maxima in youngest plant shoot leaves and newly-grown shoots in September. Sage stems showed similar THD content variations when linked to harvest times, however with lower percentage, 1.33 - 3.04 %. Rosmarinic acid variability showed the same trends, its content ranged between 0.76 % and 1.65 % in leaves, and between 0.19 % and 0.83 % in stems, respectively. Highest percentages of both THD and RA were found in top leaves, lowest in leaves from the middle of the stem. When linked to plant phenophase, the content of THD and RA decreased at flowering time.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Areias J Valentao P Andrade PB Ferreres F Seabra RM. Flavonoids and phenolic acids of sage: influence of some agricultural factors. J Agric Food Chem 2000;48:6081-6084.

  • [2] Baricevic D Sosa S Della Loggia R. et al. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol. 2001;75:125-132.

  • [3] Baskan S Oztekin N. Erim FB. Determination of carnosic acid in sage by capillary electrophoresis. Food Chem 2007;101:1748-1752.

  • [4] Bouaziz M Yangui T Sayadi S Dhouib A. Disinfectant properties of essential oils from Salvia officinalis L. cultivated in Tunisia. Food Chem Toxicol 200947:2755-2760.

  • [5] British Herbal Compendium. Vol. 2. Bristol: British Herbal Medicine Association Publications; 2006;339-343.

  • [6] Cuvelier ME Berset C Richard HJ. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J Am Oil Chem Soc 1996;73:645-652.

  • [7] European Pharmacopoeia 8th Edition (Ph. Eur. 8) Strasbourg: Council of Europe; 2014;131813694250.

  • [8] Gracza L Ruff P. Rosmarinsaure in Arzneibuchdrogen und ihre HPLC-Bestimmung. Arch Pharm (Weinheim) 1984;317:339-345.

  • [9] Grella GE Picci V. Variazioni stagionali dell‘olio essenziale di Salvia officinalis. Fitoterapia 1988;59(2):97-102.

  • [10] Heeger EF. Handbuch des Arznei- und Gewurzpflanzenbaues. Drogengewinnung. Berlin: Deutscher Bauernverlag; 1956;632-633.

  • [11] Janicsak G Mathe I Miklossy-Vari V Blunden G. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Syst Ecol 1999;27:733-738.

  • [12] Khan A Najeeb-ur-Rehman AlKharfy KM Gilani AH. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K+ channels. Bangladesh J Pharmacol 2011;6:111-116.

  • [13] Lamaison JL Pettitjean-Freytet C Carnat A. Teneurs en acide rosmarinique en derives hydroxycinnamiques totaux et activite antioxydante ches les Apiacees les Borraginacees et les Lamiacees medicinales. Ann Pharm Franc 1990;48:103-108.

  • [14] Lu Y Foo LY. Antioxidant activities of polyphenols from sage. Food Chem 2001;75:197-202.

  • [15] Martins N Barros L Santos-Buelga C et al. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 2015;170:378-385.

  • [16] Pharmacopoea Bohemoslovaca Ed. 4 (PhBs IV). Vol. II. Praha: Avicenum; 1987;416-417.

  • [17] Rasmussen KE Rasmussen R Svendsen AB. Die qualitativen und quantitativen Schwankungen der Einzelkomponenten des atherischen Oles in den Blattern von Salvia officinalis L. mit der Entwicklung des Blattes. Sci Pharm 1971;39(3):159-167.

  • [18] Tekeľova D. Salvia officinalis L. cv. Krajova. II. Kvalita vňaťovej drogy v priebehu ontogenezy. Farm Obzor 1993;62:213-222.

  • [19] Tekeľova D Havassy I. Salvia officinalis L. cv. Krajova. III. Zmeny v kvalite eterickeho oleja v priebehu ontogenezy. Farm Obzor 1993;62:253-262.

  • [20] Tekeľova D Felklova M. Salvia officinalis L. cv. Krajova. 5. Gehalt an atherischem Ol Asche und Hydroxyzimtsaurederivaten in einzelnen Blattinsertionen. Pharmazie 1993;48(12):938-940.

  • [21] Tekeľova D Felklova M Martonfi P Černaj P. Salvia officinalis L. cv. Krajova. 6. Schwankungen des Gehaltes an Komponenten im atherischen Ol einzelner Krautteile. Pharmazie 1994;49(4):938-940.

  • [22] Toth J Mrlianova M Tekeľova D Koreňova M. Rosmarinic acid - an important phenolic active compound of lemon balm (Melissa officinalis L.) Acta Fac Pharm Univ Comen 2003;50:139-146.

  • [23] Wang H Provan GJ Heilliwell K. Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 2004;87:307-311

Journal information
Impact Factor

CiteScore 2018: 0.39

SCImago Journal Rank (SJR) 2018: 0.128
Source Normalized Impact per Paper (SNIP) 2018: 0.337

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 252 150 0
PDF Downloads 117 77 1