Application Concept of the Active Magnetic Suspension Technology in the Aircraft Engine

Open access


The paper presents the results of work on control and monitoring systems of an active magnetic bearings for the aircraft engine. Mathematic model of the active homopolar electromechanical actuator with permanent magnets is expanded. Mathematical model of the test object is developed what allows to propose a control algorithm. The experimental verification of this theory was performed on the laboratory test stand. Moreover, special monitoring system is also designed. Presented comprehensive approach allows increasing reliability of the aircraft engines, as well as in wind turbines, electric drives and machine tools spindles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Binder A. Schneider T. Klohr M. Fixation of buried and surface mounted magnets in high speed permanent magnet synchronous machines. IEEE Trans on Industry Applications 42 (4) 2006 DOI: 10.1109/TIA.2006.876072.

  • 2. Brusa E.: Semi-active and active magnetic stabilization of supercritical rotor dynamics by contra-rotating damping. “Mechatronics” No. 24 2014.

  • 3. Falkowski K. Gosiewski Z.: Multifunctional magnetic bearings. Institute of Aviation Scientific Library Warsaw 2003.

  • 4. Genta G.: Dynamics of Rotating Systems. Springer Science New York 2005.

  • 5. Gębura A.: Dozorowanie stanu technicznego węzłów łożyskowych i wybranych elementów transmisji zespołu napędowego. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych Warszawa 2014.

  • 6. Gosiewski Z. Żokowski M.: Sliding Mode Control for Active Magnetic Bearing System. “Mechanics” Vol. 24 No. 2 2005.

  • 7. Kurnyta-Mazurek P. Henzel M. Kurnyta A.: Analysis Of The Method Of Predictive Control Applicable To Active Magnetic Suspension Systems Of Aircraft Engines. “Research Works of Air Force Institute of Technology” Iss. 37 2015.

  • 8. Mohammadi E. Montazeri-Gh M.: Active Fault Tolerant Control with self-enrichment capability for gas turbine engines. “Aerospace Science and Technology” No. 56 2016.

  • 9. Motee N. Queiroz M.S.D.: Control of Active Magnetic Bearing. “Proc. of the 41st IEEE Conference on Decision and Control” Las Vegas USA IEEE 2002.

  • 10. Polajzer B.: Modeling and Control of Horizontal-Shaft Magnetic Bearing System. Industrial Electronics ISIE '99 Proceedings of the IEEE International Symposium on 1999.

  • 11. Sawicki J. Maslen E.H. Bischof K.R.: Modeling and Performance Evaluation of Machining Spindle with Active Magnetic Bearings. “Journal of Mechanical Science and Technology” No. 21 2007.

  • 12. Schweitzer G. Traxler A. Bleuler H.: Magnetlager: Grundlagen. “Eigenshaften und Anwendungen berührungsfreier elektromagnetischer Lager” Springer Verlag Berlin 1992.

  • 13. Smith R.D. Weldon W.F.: Nonlinear control of a rigid rotor magnetic bearing system: modeling and simulation with full state feedback. “IEEE Transactions on Magnetics” Vol. 3 No. 2 1995.

  • 14. Szolc T. Konowrocki R. Michajlow M. Pregowska A.: An investigation of the dynamic electromechanical coupling effects in machine drive systems driven by asynchronous motors. “Mechanical Systems and Signal Processing” No. 49 2014.

  • 15. Tang J. Xiang B. Zhang Y.: Dynamic characteristics of the rotor in a magnetically suspended control moment gyroscope with active magnetic bearing and passive magnetic bearing. “ISA Transactions” No. 53 2014.

  • 16. Zhe S. et al.: Identification of active magnetic bearing system with a flexible rotor. “Mechanical Systems and Signal Processing” No. 49 2014.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 124 7
PDF Downloads 169 98 8