The Concept of Optimizing the Decopperisation of Slag Slurry in Electrical Furnace

Open access

Abstract

This paper presents the idea of increasing the effectiveness of slag decopperisation in an electric furnace in the "Głogów II" Copper Smelter by replacing the currently added CaCO3 with a less energy-intensive technological additive. As a result of this conversion, one may expect improved parameters of the process, including process time or power consumption per cycle. The incentives to optimize the process are the benefits of increasing copper production in the company and the growing global demand for this metal. The paper also describes other factors that may have a significant impact on the optimization of the copper production process. Based on the literature analysis, a solution has been developed that improves the copper production process. The benefits of using a new technology additive primarily include increased share of copper in the alloy, reduced production costs, reduced amount of power consumed per cycle and reduced time it takes to melt. At the conclusion of the paper, the issues raised are highlighted, stressing that mastering the slag slurry process in electric furnaces requires continuous improvement.

[1] Gawlik, J., Plichta, J., Świć, A. (2013). Production processes. Warszawa: Polskie Wydawnictwo Ekonomiczne. (in Polish).

[2] Gulik, M., Jarosz, P., Kusiak, J. i in. (2016). Modeling the production process of blister copper using artificial neural networks. Rudy i Metale Nieżelazne Recykling. 61(1), 21-25. (in Polish).

[3] Krzemińska, M. (2012). Economics of copper production from LGOM fields in research and national publications. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. 42. (in Polish).

[4] Zhang, F., Yang, C. (2016). China’s Copper Market Analysis and Outlook. Bejing Antaike Information Development. Lisbon 9 march, pp. 7.

[5] Czarnecki, J., Śmieszek, Z. & Milczkowski, Z. (2001) The slag slurry conversion and CuPbFe converter in HM "Głogów II". Rudy i Metale Nieżelazne. 46(5-6), 221-227. (in Polish).

[6] Czernecki, J., Warmuz, M., Wojciechowski, R. i in. (1996) Copper smelter in KGHM Polska Miedź SA. Monografia KGHM Polska Miedź SA (str. 981). Lubin: Wydawnictwo PROFIL. (in Polish).

[7] Śmieszek, Z. (1986). Reduction of cuprous oxide in the slurry slurry conversion process in an electric furnace. Archives of Metalurgy and Materials. 31(4), 664. (in Polish).

[8] Gornowicz, M. Romaniuk, K. Szczubełek G. (2014) Production Economics. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko - Mazurskiego. (in Polish).

[9] Zajączkowski, A., Czernecki, J. & Botor, J. (1997). Examination of the viscosity of metallurgical slags. Rudy i Metale Nieżelazne. 42(1), 12- 18. (in Polish).

[10] Bratek, S., Czernecki, J., Norwisz, J. i in. (1985). Slag viscosity suspension. Rudy i Metale Nieżelazne. 30(3), 298-303. (in Polish).

[11] Bogacz, A. (1975). Physical and chemical properties and structure of liquid slags. Prace naukowe Instytutu Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławskiej: Studia i Materiały. 1 - 75. (in Polish).

[12] Wu, L., Gran, J. & Sichen, D. (2011). The Effect of Calcium Fluoride on Slag Viscosity. Metalurgical and Materials Transactions B. 33B, 723-729.

[13] Tanaka, T. & Nakamoto, M. (2005). A Model for Estimation of Viscosity of Molten Silicate Slag. The Iron and Steel Institute of Japan International (ISIJ). 45(5), 651-656. DOI: 10.2355/isijinternational.45.651.

[14] Webb, S.L. (2005). Chapter 3: Silicate melts at extreme conditions - Viscosity and configurational entropy, European Mineralogical Union Notes in Mineralogy: Mineral behaviour at extreme conditions. Publishing house Wydawnictwo Eötvös University. 72-75.

[15] Webb, S.L. (2005). Structure and rheology of iron-bearing Na2O - Al2O3 - SiO2 melts. European Journal of Mineralogy. 17, 223-232.

[16] Ray, H.S. (2006). Theory of Toop and Samis, Introduction to Melts: Molten Salts, Slags and Glasses. Allied Publishers, 104-112.

[17] Bydałek, A., Wędrychowicz, M. (2017). Optimization of the production process of the Głogów II Copper Foundry with the use of CaF2 technological additive. 2nd International Conference „Methods and Tools in Production Engineering 2017”, 11-12 May. (in Polish).

[18] Burkowicz, A., Galos, K., Guzik, K. i in. (2013). Balance of mineral resources management in Poland and the World 2013. Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. (in Polish).

[19] HSC Chemistry for Windows XP, ver. 5.0.

[20] Wędrychowicz, M., Kucharski, M. (2013). Change of viscosity of slag slurry in copper recovery proces. Recykling metali nieżelaznych - konferencja międzynarodowa. Kraków 6-8. 02. 2013r., pp. 42.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 115 11
PDF Downloads 68 63 6