Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization

Open access

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.

[1] Kuang-Oscar, Yu. (2001). Modeling for casting and solidification processing. CRC Press.

[2] Vijian, P., Arunachalam, V.P. & Charles, S. (2007). Study of surface roughness in squeeze casting LM6 aluminium alloy using Taguchi method. Indian Journal of Engineering & Materials Sciences. 14, 7-11.

[3] Ghomashchi, M.R. & Vikhrov, A. (2000). Squeeze casting: an overview, Journal of Materials Processing Technology. 101(1), 1-9.

[4] Yue, T.M. & Chadwick, G.A. (1996). Squeeze casting of light alloys and their composites. Journal of Materials Processing Technology. 58(2), 302-307.

[5] Britnell, D.J. & Neailey, K. (2003). Macrosegregation in thin walled castings produced via the direct squeeze casting process. Journal of Materials Processing Technology. 138(1), 306-310.

[6] Krishna, P. (2001). A study on interfacial heat transfer and process parameters in squeeze casting and low pressure permanent mold casting. Ph.D. Thesis, University of Michigan.

[7] Rajagopal, S. & Altergott, W.H. (1985). Quality control in squeeze casting of aluminium. AFS Transactions. 93, 145-154.

[8] Yang, L.J. (2007). The effect of solidification time in squeeze casting of aluminium and zinc alloys. Journal of Materials Processing Technology. 192, 114-120.

[9] Hu, H. (1998). Squeeze casting of magnesium alloys and their composites. Journal of Materials Science. 33(6), 1579-1589.

[10] Chattopadhyay, H. (2007). Simulation of transport processes in squeeze casting. Journal of Materials Processing Technology. 186(1), 174-178.

[11] Yue, T.M. (1997). Squeeze casting of high-strength aluminium wrought alloy AA7010. Journal of Materials Processing Technology. 66(1), 179-185.

[12] Raji, A. & Khan, R.H. (2006). Effects of pouring temperature and squeeze pressure on Al-8% Si alloy squeeze cast parts. AU JT. 9(4), 229-237.

[13] Yang, L.J. (2003). The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys. Journal of Materials Processing Technology. 140(1), 391-396.

[14] Hong, C.P., Lee, S.M. & Shen, H.F. (2000). Prevention of macrodefects in squeeze casting of an Al-7 wt. pct Si alloy. Metallurgical and Materials Transactions B. 31(2), 297-305.

[15] Benguluri, S., Vundavilli, P.R., Bhat, R.P. & Parappagoudar, M.B. (2011). Forward and reverse mappings in metal casting—A step towards quality casting and automation (11-009). AFS Transactions. 119, 19.

[16] Souissi, N., Souissi, S., Niniven, C.L., Amar, M.B., Bradai, C. & Elhalouani, F. (2014). Optimization of squeeze casting parameters for 2017 a wrought al alloy using Taguchi method. Metals. 4(2), 141-154.

[17] Patel, G.C.M., Krishna, P. & Parappagoudar, M.B. (2014). Optimization of squeeze cast process parameters using Taguchi and grey relational analysis. Procedia Technology. 14, 157-164.

[18] Senthil, P. & Amirthagadeswaran, K.S. (2012). Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method. Journal of Mechanical Science and Technology. 26(4), 1141-1147.

[19] Senthil, P. & Amirthagadeswaran, K.S. (2014). Experimental study and squeeze casting process optimization for high quality AC2A aluminium alloy castings. Arabian Journal for Science and Engineering. 39(3), 2215-2225.

[20] Vijian, P. & Arunachalam, V.P. (2006). Optimization of squeeze cast parameters of LM6 aluminium alloy for surface roughness using Taguchi method. Journal of Materials Processing Technology. 180(1), 161-166.

[21] Vijian, P., Arunachalam, V.P. & Charles, S. (2007). Study of surface roughness in squeeze casting LM6 aluminium alloy using Taguchi method. Indian Journal of Engineering & Materials Sciences. 14, 7-11.

[22] Vijian, P. & Arunachalam, V.P. (2007). Modelling and multi objective optimization of LM24 aluminium alloy squeeze cast process parameters using genetic algorithm. Journal of Materials Processing Technology. 186(1), 82-86.

[23] Guo, Z.H., Hou, H., Zhao, Y.H. & Qu, S.W. (2012). Optimization of AZ80 magnesium alloy squeeze cast process parameters using morphological matrix. Transactions of Nonferrous Metals Society of China. 22(2), 411-418.

[24] Bin, S.B., Xing, S.M., Zhao, N. & Li, L. (2013). Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting. Transactions of Nonferrous Metals Society of China. 23(4), 977-982.

[25] Patel, G.C.M., Krishna, P. & Parappagoudar, M.B. (2015). Modelling of squeeze casting process using design of experiments and response surface methodology, International Journal of Cast Metals Research. 28(3), 167-180.

[26] Rao, R.V., Savsani, V.J. (2012). Mechanical design optimization using advanced optimization techniques, London: Springer.

[27] Rosenberg, R.S. (1967). Simulation of genetic populations with biochemical properties. Ph.D. Thesis, University of Michigan.

[28] Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic algorithm. In Proceedings of 1st International Conference on Genetic Algorithms, 93-100.

[29] Kuriakose, S. & Shanmugam, M.S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology. 170, 133–141.

[30] Vundavilli, P.R., Kumar, J.P. & Parappagoudar, M.B. (2013). Weighted average-based multi-objective optimization of tube spinning process using non-traditional optimization techniques. International Journal of Swarm Intelligence Research. 4(3), 42-57.

[31] Surekha, B., Kaushik, L.K., Panduy, A.K., Vundavilli, P.R. & Parappagoudar, M.B. (2012). Multi-objective optimization of green sand mould system using evolutionary algorithms. The International Journal of Advanced Manufacturing Technology. 58(1-4), 9-17.

[32] Saravanan, R. & Sachithanandam, M. (2001). Genetic algorithm (GA) for multivariable surface grinding process optimisation using a multi-objective function model. The International Journal of Advanced Manufacturing Technology. 17(5), 330-338.

[33] Rao, R.V., Pawar, P.J. & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture. 222, 949-958.

[34] Datta, R., Majumder, A. (2010). Optimization of turning process parameters using multi-objective evolutionary algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, (July 2010). 38, 1-6.

[35] Ali-Tavoli, M., Nariman-Zadeh, N., Khakhali, A. & Mehran, M. (2006). Multi-objective optimization of abrasive flow machining process using polynomial neural networks and genetic algorithms. Machining Science Technology: An International Journal. 10(4), 491-510.

[36] Agrawal, R.K., Pratihar, D.K. & Choudhury, A.R. (2006). Optimization of CNC isoscallop free form surface machining using a genetic algorithm. International Journal of Machine Tools and Manufacture. 46(7), 811-819.

[37] Navalertporn, T. & Afzulpurkar, N.V. (2011). Optimization of tile manufacturing process using particle swarm optimization. Swarm and Evolutionary Computation. 1(2), 97-109.

[38] Zhou, A., Qu, B.Y. Li, H., Zhao, S.Z., Suganthan, P.N. & Zhang, Q. (2011). Multi-objective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation. 1(1), 32-49.

[39] Das, S., Maity, S., Qu, B.Y. & Suganthan, P.N. (2011). Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art. Swarm and Evolutionary Computation. 1(2), 71-88.

[40] Patel G.C.M., Krishna, P., Parappagoudar, M.B. & Vundavilli, P.R. (2016). Multi-objective optimization of squeeze casting process using evolutionary algorithms, International Journal of Swarm Intelligence Research,7(1), 57-76. DOI: 10.4018/IJSIR.2016010103.

[41] Linder, J., Axelsson, M. & Nilsson, H. (2006). The influence of porosity on the fatigue life for sand and permanent mould cast aluminium. International Journal of Fatigue. 28(12), 1752-1758.

[42] Abido, M.A. (2001). Particle swarm optimization for multimachine power system stabilizer design. In Power Engineering Society Summer Meeting, 2001 (3, 1346-1351). IEEE.

[43] Raquel, C.R. & Naval, P.C. Jr. (2005). An effective use of crowding distance in multiobjective particle swarm optimization. Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM, 257-264.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 21
PDF Downloads 81 81 10