Durability of MAR-247 and IN-713C Nickel Superalloys under Cyclic Creep Conditions

Open access

Abstract

Paper presents the assessment of impact of heat treatment on durability in low-cycle fatigue conditions (under constant load) in castings made using post-production scrap of MAR-247 and IN-713C superalloys. Castings were obtained using modification and filtration methods. Additionally, casting made of MAR-247 were subjected to heat treatment consisting of solution treatment and subsequent aging. During low-cycle fatigue test the cyclic creep process were observed. It was demonstrated that the fine-grained samples have significantly higher durability in test conditions and , at the same time, lower values of plastic deformation to rupture Δϵpl. It has been also proven that durability of fine-grained MAR-247 samples can be further raised by about 60% using aforementioned heat treatment.

[1] Seon-gab, K., Young-ha, H., Tae-gu K. & Chang-min, S. (2008). Failure analysis of J85 engine turbine blades, Engineering Failure Analysis, vol. 15. 94-400.

[2] Haijun, T., Dashu C., Hongyu, Y., Mingli, X. & Ruichun, D. (2009). Fretting fatigue failure of an aero engine turbine blade, Engineering Failure Analysis, vol. 16. 2004-2008.

[3] Strang, A. (1980). High Temperature Properties of Coated Superalloys, Behaviour of High Temperature Alloys in Aggressive Environmeents, The Metals Society, London, UK 595-611.

[4] Zielińska, M. Sieniawski, J. & Wierzbińska, M. (2008). Effect of modification on microstructure and mechanical properties of cobalt casting superalloy, Archives of Metallurgy and Materials, vol. 53, issue 3. 887-893.

[5] Binczyk, F. & Śleziona, J. (2010). Effect of modification on the mechanical properties of IN-713C alloy, Archives of Foundry Engineering, vol. 10, issue 1. 195-198.

[6] Xiong, Y., Yang, A., Guo, Y., Liu, W. & Liu, L. (2001). Grain refinement of superalloys K3 and K4169 by the addition of refiners, Science and Technology of Advanced Materials, 2. 13-17.

[7] Binczyk, F., Śleziona, J. Gradoń, P. (2011). Modification of the macrostructure of nickel superalloys with cobalt nanoparticles, Composites, no. 1, 49-55.

[8] Xiong, Y., Du, J., Wie, X., Yang, A. & Liu, L. (2004). Grain refinement of Superalloy IN 718C by the addition of Inoculants, Metallurgical and Materials Transactions A, vol. 35A, July. 2111-2114.

[9] Binczyk, F. & Śleziona, J. (2010). The ATD thermal analysis of selected nickel superalloys, Archives of Foundry Engineering, vol. 10, issue 2. 13-19.

[10] Cieśla, M., Binczyk, F. & Mańka, M. (2012). Impact of surface and volume modification of nickel superalloys IN-713C and MAR-247 on high temperature creep resistance, Archives of Foundry Engineering, vol. 12 issue 4. 17-24

[11] Binczyk, F., Gradoń, P. & Mańka, M. (2012). Mechanical Properties And Creep Resistance of Nickel Alloys After Complex Modification And Double Filtration, Archives of Foundry Engineering, vol. 12, issue 2. 5 - 8

[12] Frost, H.J., Ashby, M.F. (1982). Deformation-Mechanism Maps. The plasticity and creep of metals and ceramics, Oxford, Pergamon press 166.

[13] Nabarro, F.R.N., Cress, C.M. & Kotschy, P. (1996). Thermodynamic driving force for rafting in superalloys. Acta materialia 44. 3189-3198.

[14] Epishin, A. & Link, T. (2004). Mechanism of high temperature creep of nickel-based superalloys under low applied stresses. Philosophical Magazine 84. 1979-20

[15] Cieśla, M. (2009). Durability of ŻS6U nickel superalloy with aluminide protective layer in thermal and mechanical load conditions, Monograph, Editor: Wydawnictwo Pol. Śl. (in Polish).

[16] Okrajni, J., Cieśla, M. & Swadźba, L. (1998). High- Temperature Low-Cycle Fatigue and Creep Behaviour of Nickel-Based Superalloys with Heat-Resistant Coatings. Fatigue and Fracture of Materials and Engineering Structures, vol. 21. 947-954.

[17] Castillo, R., Koul, A.K. Immarigeon, J-P. (1988). The Effects of Sernice Exposure on the Creep Properties of Cast IN-738LC Subjected to Low Stress High Temperature Creep Conditions, Superalloys 88, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, Eds., The Metallurgical Society.

[18] Zielińska, M., Sieniawski, J. & Poreba, M. (2007). Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified CoAl2O4, Archives of Materials Science and Engineering, vol. 28, issue 10. 629-632.

[19] Wyrzykowski, J., Pleszakow, E., Sieniawski, J. (1999). Deformation and cracking of metals. WNT Warszawa (in Polish).

[20] Bernsztejn, M.Ł. Zajmowskij, W.A. (1973). Structure and mechanical properties of metals, WNT Warszawa (in Polish)

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 160 5
PDF Downloads 67 66 4