The Compositions: Biodegradable Material - Typical Resin, as Moulding Sands’ Binders

Open access

Abstract

The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

[1] Pielichowski, J., Puszyński, A. (2003). Plastic technology, WNT, Warszawa. (in Polish)

[2] Kilarska, M., Solarski, W., Zawada, J., Zieliński, E. (1990). Chemical binders molding, Wydawnictwo AGH, Kraków. (in Polish).

[3] Serghini, A. (2010). Silicate systems, cold-box - if they can reach the top?, Przegląd Odlewnictwa, 5-6, 220-225. (in Polish).

[4] Major-Gabryś, K. (2007). Moulding with water glass easy to knock out. Doctor’s thesis. AGH-University of Science and Technology, Kraków, 2007.

[5] Major-Gabryś K., Dobosz St.M. (2010). Loose weight selfhardening of hydrated sodium silicate and liquid hardeners ester. Polska Metalurgia w latach 2006-2010. Komitet Metalurgii Polskiej Akademii Nauk. Wydawnictwo Naukowe AKAPIT. Kraków, 328-335.M (in Polish).

[6] Major-Gabryś, K., Dobosz, St.M. & Jakubski, J. (2013). Modified hydrated sodium silicate as a modern binder for ecological moulding sands, Manufacturing Technology. ISSN 1213-2489. vol. 13 no. 1, 68-73.

[7] Major-Gabryś K. & Dobosz, St.M. (2009). A new ester hardener for moulding sands with water glass having slower activity. Archives of Foundry Engineering, 9(4), 125-128.

[8] Dobosz, St.M. & Major-Gabryś, K. (2006). New aspects in the use of the mass with water glass. Materials Engineering SK, 13(3), 14-17. (in Polish).

[9] Novotny, J. (2005). Mass self-curing of the bonding system geopolimerowym, Mat. VIII Konferencji Odlewniczej TECHNICAL 2005, 111-118. (in Polish).

[10] Burian, A., Antoš, P. & Hrazdera, M. (2005). Geopolymerni pojivovy system a vlasnosti pojivove obalky zrn. Vyzkum a vyvoj ve slevarenstvi, 200-203.

[11] Dobosz, St.M., Jelinek, P. & Major-Gabryś, K. (2011). Development tendencies of moulding and core sands, China Foundry, Vol. 8, No. 4, 438-446.

[12] Kuciel, S., Liber-Kneć, A. & Zajchowski, S. (2009). Biocomposites matrix of thermoplastic starch or a mixture of polylactide with starch filled with natural fibers, POLIMERY, 54, nr 10, 667-673. (in Polish)

[13] Avérous, L. (2004). Biodegradable multiphase system based on plasticized starch: A Review, Journal of Macromolecular Science Part C - Polymer Reviews, vol. C44, No. 3, 231-274.

[14] Avérous, L. (2008). Polylactic acid: Synthesis, Properties and Application, Monomers, Polymers and Composites from Renewable Resources, Elsevier, 433-450.

[15] Coleman, D., Crossley, D. (1996). Fundamentals of Soil Ecology, Academic Press Limited, London, UK.

[16] Contractor’s Report to the Board, Performance Evaluation of Environmentally Degradable Plastic Packaging and Disposable Food Service Ware - Final Report, Zero Waste California Integrated Waste Management Board, 2007

[17] Mohanty, A.K., Misra, M., and Drzal, L.T. (2005). Natural fibres, biopolymers, and their bio-composites. CRC Press: UK, 2005

[18] Scott, G (2001). Environmentally degradable polyolefins: When, why and how. In Expert Group Meeting on Environmentally Degradable Plastics, Present Status and Perspectives. Trieste: ICS-UNIDO, 37-48.

[19] Choi, E.J. & Park, J.K. (1996). Study on biodegradability of PCL/SAN blend using composting method, Polymer Degradat. Stabil., 52, 321-326.

[20] Astete, C.E. & Sabliov, C.M. (2006). Synthesis and characterization of PLGA nanoparticles, Journal of Biomaterials Science - Polymer Edition, no 17 (3), 247-289.

[21] Iwamoto, A. & Tokiwa, Y. (1994). Enzymatic degradation of plastics containing polycaprolactone, Polymer Degradat. Stabil., 45, No 2, 205-213.

[22] Lewandowski, J.L. (1997). Materials for molds. Kraków, (in Polish).

[23] Gavi, E., Marchisio, D.L., Barresi, A.A. (2009). CFD modelling of polycaprolactone nanoparticles precipitation via solvent - displacement for pharmaceutical applications, In: 8th World Congress of Chemical Engineering, 23-26.

[24] Pinto Reis, C., Neufeld, R.J., Ribeiro, A. & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine: Nanotechnology, Biology, and Medicine 2, 8-21.

[25] Grabowska, B. (2013). New polymeric binder in the form of aqueous composition involving poly (acrylic acid) or a salt thereof and a modified biopolymer for use in casting, WN Akapit, Kraków. (in Polish).

[26] Pielichowski, J. & Pielichowski, K. (1995). Application of thermal analysis for the investigation of polimer degradation process, Journal of Thermal Analysis, vol.43, 505-508.

[27] Dobosz, St.M. & Jakubski, J. (2001). Hot-distortion - important criterion for assessing the quality of core masses, Archives of Mechanical Technology and Automation, vol. 21 nr spec., 195-196. (in Polish).

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 12
PDF Downloads 13 13 4