Structure and Properties Investigation of MCMgAl12Zn1 Magnesium Alloy

Open access

Abstract

This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength) and grain size are shifting with an increasing cooling rate.

[1] Guangyin, Y., Manping, L., Wenjiang, D. & Inoue, A. (2003). Mechanical properties and microstructure of Mg-Al- Zn-Si-base alloy. Materials Transactions. 44(4), 458-462.

[2] Watanabe, H., Mukai, T., Kamado, S., Kojima, Y. & Higashi, K. (2003). Mechanical properties of Mg-Y-Zn alloy processed by equal-channel-angular extrusion. MaterialsTransactions. 44(4), 463-467.

[3] Mordike, B. L. (2002). Development of highly creep resistant magnesium alloys. Mater. Sci. Eng. A324, 103-112.

[4] Djurdjevis, M.B., Kierkus, W.T., Byczynski, G.E., Stockwell, T.J. & Sokolowksi, J.H. (1999). Modeling of fraction solid for 319 aluminum alloy. AFS Transactions. 14, 173-179.

[5] Dobrzański, L.A., Maniara, R.& Sokolowski, J.H. (2006). The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics. Journal of Achievements in Materialsand Manufacturing Engineering. 17(1-2), 217-220.

[6] Dobrzański, L.A., Kasprzak, W., Kasprzak, M. & Sokolowski, J.H. (2007). A novel approach to the design and optimization of aluminum cast component heat treatment processes using advanced UMSA physical simulations. Journal of Achievements in Materials and ManufacturingEngineering. 24(2), 139-142.

[7] Dobrzański, L.A., Maniara, R. & Sokolowski, J.H. (2007). The effect of cooling rate on microstructure and mechanical properties of AC AlSi9Cu alloy. Archives of MaterialsScience and Engineering. 28(2), 105-112.

[8] Dobrzański, L.A., Maniara, R., Sokołowski, J. & Kasprzak, W. (2007). Effect of cooling rate on the solidification behaviour of AC AlSi7Cu2 alloy. Journal of MaterialsProcessing Technology. 191, 317-320.

[9] Dobrzański, L.A., Maniara, R., Sokolowski, J.H. & Krupiński, M. (2007). Modelling of mechanical properties of Al-Si-Cu cast alloys using the neural Network, Journal ofAchievements in Materials and Manufacturing. 20(1-2), 347-350.

[10] Dobrzański, L.A. & Król, M. (2010). Thermal and mechanical characteristics of cast Mg-Al-Zn alloy, Archivesof Foundry Engineering. 10(1), 27-30.

[11] Dobrzański, L.A., Król, M. & Tański, T. (2010). Influence of cooling rate on crystallization, structure and mechanical properties of MCMgAl6Zn1 alloy. Archives of FoundryEngineering. 10(3), 105-110.

[12] Dobrzański, L.A. & Król, M. (2011). Thermal and structure analysis of the MA MgAl6Zn3 magnesium alloy. Journal ofAchievements in Materials and Manufacturing Engineering. 46(2), 189-195.

[13] Białobrzeski, A. & Pezda, J. (2011). Registration of melting and crystallization process of synthetic MgLi3,5 alloy with use of ATND method. Archives of Foundry Engineering. 11(4), 5-8.

[14] Kasprzak, M. (2008). Patent No.: US 7,354,491 B2, United States Patent.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 19
PDF Downloads 26 26 9