Effects of Cr - Ni 18/9 Austenitic Cast Steel Modification by Mischmetal

Open access

Abstract

This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabilized with titanium. The changes in the structure of cast steel and their effect on mechanical properties and intergranular corrosion were studied. It was found that rare earth metals decrease the sulfur content in cast steel and above all, they cause a distinct change in morphology of the δ ferrite and non-metallic inclusions. These changes have improved mechanical properties. R02, Rm, and A5 and toughness increased significantly. There was a great increase of the resistance to intergranular corrosion in the Huey test. The study confirmed the high efficiency of cast steel modification by mischmetal in industrial environments. The final effect of modification depends on the form and manner of placing mischmetal into the liquid metal and the melting technology, ie the degree of deoxidation and desulfurization of the metal in the furnace.

[1] Bain, E.C., Aborn, R.H. & Ruherford, J.J.B. (1933). The nature and Prevention of Intergranular Corrosion in Austenitic Stainless Steels. Trans. Amer. Soc. for SteelTreating. 21, 481 - 509.

[2] Stwaström, C. & Hiller, M.J. (1969). An Improved Depleted- Zone Theory of Intergranular Corrosion of 18-8 Stainless Steel. Journal of the Iron and Steel Institute. 207, 77 - 85.

[3] Hall, E.L. & Briant, C.L. (1984). Chromium Depletion in the Vicinity of Carbides in Sensitized Austenitic Stainless Steels. Metallurgical Transactions A. 15A, 793 - 811.

[4] Briant, C.L. & Hall, E.L. (1987). Heat-to-Heat Variability in the Corrosion Resistance and Microstructure of Low Carbon AISI 316 Nuclear Grade Stainless Steel. Corrosion. 43, 525 - 533.

[5] Czernow, W.S. & Busołł, F.I. (1975). O miechanizmie modificirowanija mietałłow, Mietałły. 2.

[6] Rebinder, P.A. & Lipman, E.S. (1936). Fizyko-chimiczeskije osnowy modyfikacji mietałłow i spławow małymi powierchnostno aktiwnymi primiesjami. Sbornik Issliedowanija w obłasti prikładnoj fizyko-chimii powierchnostnych jawlienij. ONTI.

[7] Jura, S. (1973). Zeszyty Naukowe Politechniki Śląskiej,Mechanika. Zeszyt 48. Gliwice, 3 - 13.

[8] Romankiewicz, F. (1978). Analiza mechanizmu Modyfikacji Metali. Rudy i Metale Nieżelazne. R 23 (12), 644 - 649.

[9] Romankiewicz, F., Głazowska, I., Rybakowski, M. & Romankiewicz, R. (2009). Procesy modyfikacji w kształtowaniu struktury i właściwości stopów miedzi, In Monografia Postępy teorii i praktyki odlewnicze. Polska Akademia Nauk, Komisja Odlewnictwa, Katowice - Gliwice, 377 - 384.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 93 7
PDF Downloads 31 30 3