Modeling of Two-Stage Solidification: Part I Model Development

Open access


The paper presents a new numerical model of solidification processes in hypoeutectic alloys. The model combines stochastic elements, such as e.g. random nucleation sites and orientation of dendritic grains, as well as deterministic methods e.g. to compute velocity of dendritic tips and eutectic grains. The model can be used to determine the temperature and the size of structure constituents (of both, the primary solid phase and eutectics) and the arrangement of individual dendritic and eutectic grains in the consecutive stages of solidification. Two eutectic transformation modes, typical to modified and unmodified hypoeutectic alloys, have been included in the model. To achieve this, cellular automata and Voronoi diagrams have been utilized.

[1] McDonald, S., Nogita, K., Dahle, A., Taylor, J. & StJohn, D. (2000). Eutectic solidification and porosity formation in Al- Si alloys role of strontium. AFS Transactions. 115, 463-470.

[2] Dahle, A., Nogita, K., Zindel, J., McDonald, S. Hogan, L. (2001). Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels. Metallurgical MaterialsTransactions. 32A , 949-960.

[3] Dinnis, C., Dahle, A. & Taylor, J. (2005). Three-dimensional analysis of eutectic grains in hypoeutectic Al-Si alloys. Materials Science and Engineering A. 392A, 440-448.

[4] McDonald, S., Nogita, K., Dahle, A., Taylor, J. & StJohn, D. (2000). Eutectic solidification and porosity formation in Al- Si alloys: role of strontium. AFS Transactions. 108, 463-470.

[5] Beltran-Sanchez, L. & Stefanescu, D. (2003). Growth of solutal dendrites - a cellular automaton model and its quantitative capabilities. Metallurgical and MaterialsTransactions. 34A, 367-382.

[6] Nastac, L., & Stefanescu. D. (1996). Macrotransportsolidification kinetics modeling of equiaxed dendritic growth: Part I. model development and discussion. Metall. Mater. Trans. A. 27A, 4061-4074.

[7] Charbon, C. & LeSar, R. (1997). A 2D stochastic micromacro model of equiaxed eutectic solidification. Modelingand Simulation in Materials Science and Engineering. 5, 53-65.

[8] Gandin, C.-A. & Rappaz, M. (1994). A coupled finite element cellular automaton model for the prediction of dendritic grain structures in solidification processes. ActaMetallurgica et Materialia. 42, 2233-2246.

[9] Gonzalez-Rivera, C., Campillo, B., Castro, M., Herrera, M. & Juarez-Islas, J. (2000). On the local microstucture characteristics observed in sand cast Al-Si alloys. Mater. Sci. Engng A. 279, 149-159.

[10] Nielsen, O., Appolaire, B., Combeau, H. & Mo, A. (2001). Measurements and modeling during equiaxed solidification of Al-Cu alloys. Metall. Mater. Trans. A. 32A, 2046-2060.

[11] Kanetkar, C., Chen, I. & Stefanescu, D. (1988). A latent heat method for macro-micro modeling of eutectic solidification. Trans. ISIJ. 28, 860-868.

[12] Rappaz, M., Thevoz, P. (1987). Solute diffusion model for equiaxed dendritic growth, Acta Metallurgica. 34, 1487-1497.

[13] Gawad, J., Maciol, P. & Pietrzyk, M. (2005). Multiscale modeling of microstructure and macroscopic properties in thixoforming process using cellular automation technique. Archives of Metallurgy and Materials. 50, 549-562.

[14] Esaka, H., Kurz, W. (1984). Columnar dendrite growth: A comparison of theory. Journal of Crystal Growth. 69, 362-366.

[15] Wodo, O. (2008). Modeling of hypoeutectic alloys solidification. Unpublished PhD thesis, Czestochowa University of Technology, Czestochowa (in polish).

[16] Rider, W.J. & Kothe, D.B. (1998). Reconstructing volume tracking. Journal of Computational Physics. 141, 112-152.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 96 6
PDF Downloads 45 42 4