Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

Open access

Abstract

The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1) on microstructure (austenite and graphite fraction, density of austenite and graphite grains) and temperature curves in 2 mm wall ductile iron casting has been done.

[1] Stefanescu, D.M., Catalina, A., Guo, X., Chuzhoy, L, Pershing, M.A. & Biltgen, G.L. (1998). Prediction of room temperature mcrostructure and mechanical properties in iron castings. In VIII Scientific International Conference Modeling of Casting, Welding and Advanced Solidification Processes, June 7-12, 1998 (pp. 455-462). San Diego, CA, ed. B.G. Thomas & C. Beckermann: TMS, Warrendale.

[2] Yoo, S.M., Ludwig, A. & Sahm, P.R. (1997). Numerical simulation of solidification of nodular cast iron in permanent molds. In Proc. of the 4th decennial Intern. Conf. on Solidification Processing, 07-10. July, 1997 (pp. 494-497). Sheffield, UK, ed. J. Beech & H. Jones: Ranmoor House, Univ. of Sheffield.

[3] Chang, S., Shangguan, D. & Stefanescu, D. (1992). Modeling of the Liquid/Solid and the Eutectoid Phase Transformations in Spheroidal Graphite Cast Iron. Metal. Trans. A. 23A, 1333-1346.

[4] Skaland, T., Grong, O. & Grong, T. (1993). A Model for the Graphite Formation in Ductile Cast Iron. II. Solid State Transformation Reactions. Metal. Trans. A. 24A, 2347-2353.

[5] Onsoien, M., Grong, O., Gundersen, O. & Skaland, T. (1999). A process model for the microstructure evolution in ductile cast iron. I. The model. Mat. Trans. A. 30A, 1053-1068.

[6] Fraś, E. & Górny, M. (2011). Thin wall ductile and austempered iron castings as substitutes for aluminium alloy castings. Foundry Trade J. Int. 185, 85-90.

[7] Labrecque, C. & Gagne, M. (2003). Production of thin-wall ductile iron castings. Int. J. of Cast Metals Res. 16, 313-318.

[8] Stefanescu, D. M., Ruxanda, R. E. & Dix, L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. J. of Cast Metals Res. 16, 319-324.

[9] Fredriksson, H., Stjerndahl, J. & Tinoco, J. (2005). Mat. Sci. Eng. A. 413, 363.

[10] Rafii-Tabar, H. & Chirazi, A. (2002) Multiscale computational modelling of solidification phenomena. Physics Reports Review Section of Physics Letters. 365, 145-249.

[11] Lee, P. D., Chirazi, A., Atwood, R. C. & Wang, W. (2004). Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si- Cu alloy. Mat. Sci. Eng. A. 365, 57-65.

[12] Umantsev, A. R., Vinogradov, V. V. & Borisov, V. T. (1985). Mathematical modeling of the dendrite growth during the solidification from undercooled melt. Kristallografia. 30, 455-60, (in Russian).

[13] Rappaz, M. & Gandin, Ch. A. (1993). Probabilistic Modelling of Microstructure Formation in Solidification Processes. Acta Met. et Mater. 41, 345-60.

[14] Pan, S. & Zhu, M. (2010). A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Mater. 58, 340-52.

[15] Guillemot, G., Gandin, Ch. A. & Bellet, M. (2007). Interaction between single grain solidification and macrosegregation: Application of a cellular automaton- Finite element model. J. of Crystal Growth. 303, 58-68.

[16] Beltran-Sanchez, L. & Stefanescu, D. M. (2004). A Quantitative Dendrite Growth Model and Analysis of Stability Concepts. Metall. Mat. Trans. A. 35, 2471-2485.

[17] Pavlyk, V. & Dilthey, U. (2004). Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling. Modelling andSimulation in Mat. Science and Engineering. 12, 33-45.

[18] Zhu, M. F. & Hong, C. P. (2002). A three dimensional modified cellular automaton model for the prediction of solidification microstructures. ISIJ Int. 42, 520-526.

[19] Jarvis, D. J., Brown, S. G. R. & Spittle, J. A. (2000). Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automatonfinite difference simulations. Mat. Sci. Techn. 16, 1420-4.

[20] Burbelko, A. A., Fraś, E., Kapturkiewicz, W. & Gurgul, D. (2010). Modelling of Dendritic Growth During Unidirectional Solidification by the Method of Cellular Automata. Mat. Sci. Forum. 649, 217-222.

[21] Burbelko, A. A., Fraś, E., Kapturkiewicz, W. & Olejnik, E. (2006). Nonequilibrium Kinetics of Phase Boundary Movement in Cellular Automaton Modelling. Mat. Sci. Forum. 508, 405-410.

[22] Zhao, H.L., Zhu, M. F. & Stefanescu, D. M. (2011). Modeling of the Divorced Eutectic Solidification of Spheroidal Graphite Cast Iron. Key Eng. Materials. 457, 324-329.

[23] Kapturkiewicz, W., Burbelko, A. A., Fraś, E., Górny, M. & Gurgul D. (2010). Computer modelling of ductile iron solidification using FDM and CA methods. J. ofAchievments in Materials and Manufacturing Engineering. 43, 310-323.

[24] Górny, M. (2010) Solidification of thin wall ductile iron castings with hypereutectic composition. ISIJ International 50, 847-853.

[25] Gandin, Ch. A. & Rappaz, M. (1994). A Coupled Finite Element-Cellular Automaton Model for The Prediction Of Dendritic Grain Structures in Solidification Processes. ActaMetall. Mater. 42, 2233-2246.

[26] Burbelko, A., Fraś, E., Gurgul, D., Kapturkiewicz, W. & Sikora, J. (2011). Simulation of the Ductile Iron Solidification Using a Cellular Automaton. Key Eng. Materials 457, 330-336.

[27] Fraś, E., Wiencek, K., Burbelko, A.A. & Górny, M. (2006). The Application of Some Probability Density Function of Heterogeneous Nucleation. Mat. Sci Forum 508, 425-430.

[28] Hoyt, J. & Asta, M. (2002). Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B 65, 1-11.

[29] Burbelko, A.A, Kapturkiewicz, W. & Gurgul, D. (2007). Analysis of causes and means to reduce artificial anisotropy in modelling of the solidification process on cellular automaton. In Proc. of the 4th decennial Intern. Conf. on Solidif. Processing (Sheffield, UK, 07-10 July, 2007) ed J Beech and H Jones, 31-35.

[30] Dilthley, U. & Pavlik, V. (1998). Numerical simulation of dendrite morphology and grain growth with modified cellular automata. Modeling of Casting, Welding and Advanced Solidification Proc. VIII (San Diego, CA, June 7-12, 1998) ed. Thomas B. G. & Beckermann C. 589-596.

[31] Burbelko, A. & Gurgul, D. (2011). Modeling of primary and eutectic solidification by using CAFD method. Computer Methods in Materials Science. 11, 128-34.

[32] Gurgul, D. Burbelko, A. A. (2010). Simulation of austenite and graphite growth in ductile iron by means of cellular automata. Archives of Metallurgy and Materials. 55, 53-60.

[33] Kikoin, I.K. (1976). Tablicy fiziczeskih velichin. Moskwa Avtomizdat. (in Russian).

[34] Magnin, P., Mason, J. T. & Trivedi, R. (1991). Growth of Irregular Eutectic and the Al-Si System. Acta Met. et Mater. 39, 469-80.

[35] Burbelko, A. (2004). Mezomodelowanie krystalizacjimetodą automatu komórkowego. Kraków, UWND AGH.

[36] Chopard, B. & Droz, M. (2005). Cellular AutomataModeling of Physical Systems. Cambridge University Press.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 15
PDF Downloads 32 32 2