Antioxidative Responses of Microalgae to Heavy Metals

Jozef Kováčik 1
  • 1 Department of Biology, University of Trnava, 918 43, Trnava


Microalgae are unicellular free living entities and therefore their responses to excess of heavy metals must be faster and more efficient than those in vascular plants protected by various types of tissues. Up to date, numerous studies reported metal bioaccumulation potential of algae but metabolic responses have relatively rarely been monitored. Here I provide basic overview of quantitative changes of ascorbic acid (AA), reduced glutathione (GSH), phytochelatins (PCs) and selected related enzymes (ascorbate peroxidase and glutathione reductase) in some common microalgae exposed to various metals (cadmium mainly). Despite various culture and exposure conditions, some common signs of metal toxicity (including e.g. enhancement of phytochelatin biosynthesis) are clearly identifiable in algae. Other metal chelators such as organic acids are also briefly mentioned. Comparison with macroalgae, mosses and vascular plants is discussed in terms of basal values and evolutionary similarities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Braütigam A., Schaumlöffel D., Preud'homme H., Thondorf I. & Wesenberg D. 2011. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant Cell Environ. 34: 2071-2082.

  • Dresler S., Hanaka, A., Bednarek, W. & Maksymiec W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 36: 1565-1575.

  • El-Naggar A. H. & El-Sheekh M. M. 1998. Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ. Pollut. 101: 169-174.

  • Fargašová A. 2012. Physiological parameters utilization for metals ecotoxicity determination. Acta Environ. Univ. Comenianae (Bratislava). 20: 7-13.

  • Gest N., Gautier H. & Stevens R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64: 33-53.

  • Goiris K., Van Colen W., Wilches I., León-Tamariz F., De Cooman L. & Muylaert K. 2015. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal. Res. 7: 51-57.

  • Hamed S. M., Zinta G., Klöck G., Asard H., Selim S. & Abdelgawad H. 2017. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotox. Environ. Safe. 140: 256-263.

  • Hermsen C., Koprivova A., Matthewman C., Wesenberg D., Krauss G.-J. & Kopriva S. 2010. Regulation of sulphate assimilation in Physcomitrella patens: mosses are different! Planta. 232: 461-470.

  • Kováčik J., Babula P., Klejdus B., Hedbavny J. & Jarošová M. 2014. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS ONE. 9(3): e91685, doi:10.1371/journal.pone.0091685.

  • Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2015. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 8: 45-52.

  • Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2016. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 306: 58-66.

  • Kováčik J., Babula P., Peterková V. & Hedbavny J. 2017a. Long-term impact of cadmium shows little damage in Scenedesmus acutiformis cultures. Algal Res. 25: 184-190.

  • Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2017b. Ascorbic acid affects short-term response of Scenedesmus quadricauda to cadmium excess. Algal Res. 24: 354-359.

  • Kováčik J., Babula P. & Hedbavny J. 2017c. Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere. 180: 86-92.

  • Lin S.-T., Chiou C.-W., Chu Y.-L., Hsiao Y., Tseng Y.-F., Chen Y.-C., Chen H.-J., Chang H.-Y. & Lee T.-M. 2016. Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 57: 2104-2121.

  • Machado M. D. & Soares E. V. 2016. Short- and long-term exposure to heavy metals induced oxidative stress response in Pseudokirchneriella subcapitata. Clean – Soil, Air, Water 44: 1578-1583.

  • Mellado M., Contreras R. A., González A., Dennett G. & Moenne A. 2012. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol. Biochem. 51: 102-108.

  • Nowicka B., Pluciński B., Kuczyńska, P. & Kruk J. 2016. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotox. Environ. Safe. 130: 133-145.

  • Perales-Vela H. V., Pena-Castro J. M. & Canizares-Villanueva R. O. 2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10.

  • Piotrowska-Niczyporuk A., Bajguz A., Talarek M., Bralska M. & Zambrzycka E. 2015. The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ. Sci. Pollut. Res. 22: 19112-19123.

  • Pokora W., Bascik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowronska B., Dziadziuszko M. & Tukaj Z. 2014. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: A study with light-induced synchronized cultures of algae. J. Plant Physiol. 171: 69-77.

  • Romano R. L., Liria C. W., Machini M. T., Colepicolo P. & Zambotti-Villela L. 2017. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum. J. Appl. Phycol. 29: 811-820.

  • Ruiz-Domínguez M.C., Vaquero I., Obregón V., De La Morena B., Vílchez C. & Vega J. M. 2015. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J. Appl. Phycol. 27: 1099-1108.

  • Simmons D. B. D., Hayward A. R., Hutchinson T. C. & Neil Emery R. J. 2009. Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal. Bioanal. Chem. 395: 809-817.

  • Šmelková M., Molnárová M. & Fargašová A. 2013. Phytotoxic effects of nickel (Ni2+) on Sinapis alba L. seedlings. Acta Environ. Univ. Comenianae (Bratislava). 21: 69-79.

  • Tóthová L., Blahušová E. & Molnárová M. 2011. Bioaccumulation of Zn and Cu in selected macrophyte species from reservoir Gabčíkovo. Acta Environ. Univ. Comenianae (Bratislava). 19: 99-107.

  • Vidal-Meireles A., Neupert J., Zsigmond L., Rosado-Souza L., Kovács L., Nagy V., Galambos A., Fernie A. R., Bock R. & Tóth S. Z. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-L-galactose phosphorylase. New Phytol. 214: 668-681.

  • Yusof Y. A. M., Basari J. M. H., Mukti N. A., Sabuddin R., Razak Muda A., Sulaiman S., Makpol S. & Wan Ngah W. Z. 2011. Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr. J. Biotechnol. 10: 13536-13542.


Journal + Issues