Preparation, characterization of a ceria loaded carbon nanotubes nanocomposites photocatalyst and degradation of azo dye Acid Orange 7

Open access


A ceria loaded carbon nanotubes (CeO2/CNTs) nanocomposites photocatalyst was prepared by chemical precipitation, and the preparation conditions were optimized using an orthogonal experiment method. HR-TEM, XRD, UV-Vis/DRS, TGA and XPS were used to characterize the photocatalyst. Nitrogen adsorption-desorption was employed to determine the BET specific surface area. The results indicated that the photocatalyst has no obvious impurities. CeO2 was dispersed on the carbon nanotubes with a good loading effect and high loading efficiency without agglomeration. The catalyst exhibits a strong ability to absorb light in the ultraviolet region and some ability to absorb light in the visible light region. The CeO2/CNTs nanocomposites photocatalyst was used to degrade azo dye Acid Orange 7 (40 mg/L). The optical decolorization rate was 66.58% after xenon lamp irradiation for 4 h, which is better than that of commercial CeO2 (43.13%). The results suggested that CeO2 loading on CNTs not only enhanced the optical decolorization rate but also accelerated the separation of CeO2/CNTs and water.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ayanda O.S. Fatoki O.S. Adekola F.A. Ximba B.J. Akinsoji O.S. & Petrik L.F. (2015). Coal fly ash supported nZnO for the sorption of triphenyltin chloride Archives of Environmental Protection 41 pp. 59-71.

  • Campbell C.T. & Peden C.H.F. (2005). Oxygen vacancies and catalysis on ceria surfaces Science 309 pp. 713–714.

  • Chen F. Shen X.X. Wang Y.C. & Zhang J.L. (2012). CeO2 & H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange7 Appllied Catalysis B: Environmental 121–122 pp. 223–229.

  • Chen F. Wang W. Chen Z.G. & Wang T.B. (2012). Biogenic synthesis and catalysis of porous CeO2 hollow microspheres Journal of Rare Earths 30 pp. 350–354.

  • Chen F.J. Cao Y.L. & Jia D.Z. (2011). Preparation and photocatalytic property of CeO2 lamellar Appllied Surface Science 257 pp. 9226–9231.

  • Esch F. Fabris S. Zhou L. Montini T. Africh C. Fornasiero P. Comelli G. & Rosei R. (2005). Electron localization determines defect formation on ceria substrates Science 309 pp. 752–755.

  • Feng T. Wang X.d. & Feng G.S. (2013). Synthesis of novel CeO2 microspheres with enhanced solar light photocatalyic properties Materials Letters 100 pp. 36–39.

  • Fu L. Liu Z.M. Liu Y.Q. Han B.X. Wang J.Q. Hu P.A. Cao L.C. & Zhu D.B. (2004). Coating carbon nanotubes with rare earth oxide multiwalled nanotubes Advanced Materials 16 pp. 350–352.

  • Gao H.J. Zhao S.Y. Cheng X.Y. Wang X.D. & Zheng L.Q. (2013). Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent Chemical Engineering Journal 223 pp. 84–90.

  • Guerrero-Ruiz A. (1994). Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium vanadium and cerium oxides Appllied Catalysis A: General 120 pp. 71–83.

  • Iijima S. (1991). Helical microtubules of graphitic carbon Nature 354 pp. 56–58.

  • Ji P.F. Zhang J.L. Chen F. & Anpo M. (2009). Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation Applied Catalysis B: Environmental 85 pp. 148–154.

  • Kang M. Bae Y.S. & Lee C.H. (2005). Effect of heat treatment of activated carbon supports on the loading and activity of Pt catalyst Carbon 43 pp. 1512–1516.

  • Karakoti A. Singh S. & Dowding J.M. (2010). Redox-active radical scavenging nanomaterials Chemical Society Reviews 39 pp. 4422–4432.

  • Lakshminarayanan P.V. Toghiani H. & Pittman Jr C.U. (2004). Nitric acid oxidation of vapor grown carbon nanofibers Carbon 42 pp. 2433–2442.

  • Long Z. Q. Ren L. Zhu Z.W. Cui D.L. Zhao N. Li M.L. Cui M.S. & Huang X.W. (2006). Synthesis of LaPO4: Ce Terbium by Co-Precipitation Method Journal of Rare Earths 24 pp. 137–140.

  • Matsumoto S. (2004). Recent advances in automobile exhaust catalysts Catalysis Today 90 pp. 183–190.

  • Mei Y. Yan J.P. & Nie Z.R. (2010). XPS study on the influence of calcination conditions to cerium ion valence Spestroscopy and Spectral Analysis 30 pp. 270–273. (in Chinese)

  • Mishra A.K. Arockiadoss T. & Ramaprabhu S. (2010). Study of removal of azo dye by functionalized multi walled carbon nanotubes Chemical Engineering Journal 162 pp. 1026–1034.

  • Park P.W. & Ledford J.S. (1996). Effect of crystallinity on the photoreduction of cerium oxide: A study of CeO2 and Ce/Al2O3 catalysts Langmuir 12 pp. 1794–1799.

  • Park S. Vohs J.M. & Gorte R.J. (2000). Direct oxidation of hydrocarbons in a solid-oxide fuel cell Nature 404 pp. 265–267.

  • Peng X.J. Luan Z.K. Ding J. Di Z.C. Li Y.H. & Tian B.H. (2005). Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water Materials Letters 59 pp. 399–403.

  • Planeix J.M. Coustel N. Coq B. Brotons V. Kumbhar P.S. Dutartre R. Geneste P. Bernier P. & Ajayan P.M. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis Journal of the American Chemical Society 116 pp. 7935–7936.

  • Pouretedal H.R. & Kadkhodaie A. (2010). Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism Chinese Journal of Catalysis 31 pp. 1328–1334.

  • Rao R. Zhang Q.Y. Liu H.D. Yang H.X. Ling Q. Yang M. Zhang A.M. & Chen W. (2012). Enhanced catalytic performance of CeO2 confined inside carbon nanotubes for dehydrogenation of ethylbenzene in the presence of CO2Journal of Molecular Catalysis A: Chemical 363–364 pp. 283–290.

  • Rodriguez J.A. Ma S. Liu P. Hrbek J. Evans J. & Pérez M. (2007). Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction Science 318 pp. 1757–1760.

  • Sathish M. Miyazawa K. & Ye J. (2011). Fullerene nanowhiskers at liquid-liquid interface: A facile template for metal oxide (TiO2 CeO2) nanofibers and their photocatalytic activity Materials Chemistry and Physics 130 pp. 211–217.

  • Singh S. Dosani T. Karakoti A.S. (2011). A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties Biomaterials 32 pp. 6745–6753.

  • Soria J. Coronado J.M. & Conesa J.C. (1996). Spectroscopic study of oxygen adsorption on CeO2/γ-Al2O3 catalyst supports Journal of the Chemical Society Faraday Transactions 92 pp. 1619–1626.

  • Tang Y.B. Chen F.Y. & Zhang Y.F. (2006). Water Pollution Control Engineering Press of Harbin Institute of Technology Harbin 2006. (in Chinese)

  • Trovarelli A. (2002). Catalysis by Ceria and Related Materials (Catalytic Science Series vol. 2) Imperial College Press London 2002.

  • Trovarelli A. Deleitenburg C. Dolcetti G. & Lorca J.L. (1995). CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria Journal of Catalysis 151 pp. 111–124.

  • Vindigni F. Manzoli M. Damin A. Tabakova T. & Zecchina A. (2011). Surface and inner defects in Au/CeO2 WGS catalysts: Relation between Raman properties reactivity and morphology Chemistry – A European Journal 17 pp. 4356–4361.

  • Walton R.I. (2011). Solvothermal synthesis of cerium oxides Progress in Crystal Growth and Characterization of Materials 57 pp. 93–108.

  • Zhai Y. Zhang S. & Pang H. (2007). Preparation characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant Materials Letters 61 pp. 1863–1866.

  • Zhang D.S. Fu H.X. Shi L.Y. Fang J.H. & Li Q. (2007). Carbon nanotube assisted synthesis of CeO2 nanotubes Journal of Solid State Chemistry 180 pp. 654–660.

  • Zhang D.S. Mai H.L. Huang L. & Shi L.Y. (2010). Pyridine-thermal synthesis and high catalytic activity of CeO2/CuO/CNT nanocomposites Applied Surface Science 256 pp. 6795–6800.

  • Zhao P.S. Song J. Zhou S.S. Zhu Y. Jing L. & Guo Z.Y. (2013). Facile 1 4-dioxane-assisted solvothermal synthesis optical and electrochemical properties of CeO2 microspheres Materials Research Bulletin 48 pp. 4476–4480.

Journal information
Impact Factor

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 114 1
PDF Downloads 181 103 10