The effect of ultrasonic disintegration process conditions on the physicochemical characteristics of excess sludge

Open access

Abstract

Ultrasonic disintegration, as a method of sludge pre-treatment (before the stabilization process), causes changes in their physicochemical characteristics. The aim of this study was to determine the influence of ultrasonic disintegration conditions (sonication) on the changes in the physicochemical characteristics of sonicated sludge, i.e. an increase in the content of organic substances in the supernatant, sludge dewaterability and flocs structure. Thickened and non-thickened excess sludge from the municipal wastewater treatment plant in Gliwice was disintegrated. The process was conducted, using a high-power disintegrator equipped with a lenticular horn. In order to determine the most favorable conditions, the sewage sludge was sonicated at a wave frequency of f=25 kHz (as a function of time), with a different samples volume (V1=0.5 and V2=1 L) and emitter position of 1 and the 2.5 cm from the bottom of the chamber in which the process was conducted. The disintegration of sewage sludge was carried out with a specific energy density (EV) in the range from 10 to 30 kWh/m3. The evaluation of the disintegration effects was based on changes in the physicochemical characteristics of the sludge and/or supernatant at the end of the process, expressed by commonly used and author’s disintegration indicators. The best results were obtained for the sludge disintegrated with a volume of V2=1 L and the emitter position of 2.5 cm from the bottom of the chamber. The study confirms that in various operating conditions of ultrasonic disintegration, there is a possibility for obtaining different effects which may influence the course of anaerobic stabilization and quality of the final products of the process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bień J. Stępniak L. & Wolny L. (1995). Ultrasound in water disinfection and preparation of sewage sludge before dewatering Monograph 37 Publisher Technical University of Częstochowa. (in Polish)

  • Bień J. & Szparkowska I. (2005). Effect of excess sludge conditioning on the concentration of volatile fatty acids in anaerobic stabilization process Gaz Woda i Technika Sanitarna 7–8 pp. 39–46. (in Polish)

  • Bougrier C. Carrère H. & Delgenès J.P. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment Chemical Engineering Journal 106 2 pp. 163–169.

  • Chen Y.G. Yang H.Z. & Gu G.W. (2001). Effect of acid and surfactant treatment on activated sludge dewatering and settling Water Research 35 pp. 2615–2620.

  • Chu C.P. Chang B.V. Liao G.S. Jean D.S. & Lee D.J. (2001). Observations on changes in ultrasonically treated waste-activated sludge Water Research 35 pp. 1038–1046.

  • Dewil R. Baeyens J. & Goutvrind R. (2006). Ultrasonic treatment of waste activated sludge Environmental Progress 25 2 pp. 121–128.

  • Farooq R. Rehman F. Baig S. Sadique M. Khan S. Farooq U. Rehman A. Farooq A. Pervez A. Mukhtar-ul-Hassan & Shaukat S.F. (2009). The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge World Applied Sciences Journal 6 2 pp. 234–237.

  • Feng X. Lei H.Y. Deng J.C. Yo Q. & Li H.L. (2009). Physical and chemical characteristics of waste activated sludge treated ultrasonically Chemical Engineering and Processing 48 1 pp. 187–194.

  • Fukas-Płonka Ł. & Janik M. (2006). Fermentation of excess sewage sludge EkoTechnika 1 pp. 52–56. (in Polish)

  • Giemza M. (2013). Ultrasonic disintegration of the sewage treatment plant. The effects of ultrasonic disintegration in practice on several examples of sewage treatment plant Technologia Wody 11 pp. 31–35. (in Polish)

  • Gogate P.R. Tatake P.A. Kanthale P.M. & Pandit A.B. (2002). Mapping of sonochemical reactors: review analysis and experimental verification AIChE Journal 48 pp. 1542–1560.

  • Grönroos A. Kyllönen H. Korpijärvi K. Pirkonen P. Paavola T. Jokela J. & Rintala J. (2005). Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion Ultrasonics Sonochemistry 12 1–2 pp. 115–120.

  • Jiang J. Yang S. Chen M. & Zhang Q. (2009). Disintegration of sewage sludge with bifrequency ultrasonic treatment Water Science & Technology 60 6 pp. 1445–1453.

  • Khanal S.K. Isik H. Sung S. & Avan Leeuwen J. (2006). Ultrasonic conditioning of waste activated sludge for enhanced aerobic digestion in: Proceedings of IWA Specialized Conference-Sustainable Sludge Management: State of the Art Challenges and Perspectives May 29–31 Moscow Russia 2006.

  • Kopp J. Dichtl N. Müller J. & Schwedes J. (1997). Anaerobic digestion and dewatering characteristics of mechanical disintegrated excess sludge International Specialized Conference on Sludge Management “Wastewater Sludge-Waste of Resource” Politechnika Częstochowska 2 pp. 231–238.

  • Müller J. (1996). Mechanical sludge disintegration Disseration Shaker-Verlag Aachen 1996. (in German)

  • Müller J. Lehne G. Schwedes J. Battenberg S. Naveke R. Kopp J. Dichtl N. Scheminski A. Krull R. & Hempel D.C. (1998). Disintegration of sewage sludge and influence on anaerobic digestion Water Science & Technology 38 8–9 pp. 425–433.

  • Neis U. Nickel K. & Tiehm A. (2000). Enhancement of anaerobic sludge digestion by ultrasonic disintegration Water Science & Technology 42 9 pp. 73–80.

  • Pilli S. Bhunia P. Yan S. LeBlanc R.J. Tyagi R.D. & Surampalli R.Y. (2011). Ultrasonic pretratment of sludge: A review Ultrasonics Sonochemistry 18 pp. 1–18.

  • Podedworna J. & Umiejewska K. (2008). Sewage sludge technology Publishing House of Warsaw University of Technology pp. 114–115. (in Polish).

  • Portenlänger G. (1999). Mechanical and radical effects of ultrasound in: Ultrasound in Environmental Engineering Tiehm A. & Neis U. (Eds.) TU Hamburg – Harburg Reports on Sanitary Engineering 25 pp. 139–151.

  • Rai C.L. Struenkmann G. Mueller J. & Rao P.G. (2004). Influence of ultrasonic disintegration on sludge growth and its estimation by respirometry Environmental Science & Technology 38 21 pp. 5779–5785.

  • Show K.Y. Mao T. & Lee D.J. (2007). Optimization of sludge disruption by sonication. Water Research 41 pp. 4741–4747.

  • Śliwiński A. (2001). Ultrasound and their application WNT Warszawa 2001. (in Polish)

  • Tabatabaie F. & Mortazavi A. (2008). Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk World Applied Sciences Journal 3 1 pp. 119–121.

  • Tomczak-Wandzel R. Mądrzycka K. & Cimochowicz-Rybicka M. (2009). Influence of ultrasonic disintegration on the methane fermentation process. Eds.: Ozonek J. Pawłowska M. Monographs Committee of the Polish Academy of Sciences Environmental Engineering 1 58 pp. 331–337 Lublin 2009. (in Polish)

  • Tomczak-Wandzel R. Ofverstrom S. Dauknys R. & Mądrzycka K. (2011). Effect of disintegration pretreatment of sewage sludge for enhanced anaerobic digestion Environmental EngineeringThe 8th International Conference May 19–20 2011 Vilnius Lithuania Selected papers pp. 679–683.

  • Tiehm A. Nickel K. & Neis U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge Water Science and Technology 36 11 pp. 121–128.

  • Tiehm A. Nickel K. Zellhorn M. & Neis U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization Water Research 35 8 pp. 2003–2009.

  • Tytła M. Gnida A. & Zielewicz E. (2013). Changes of excess sewage sludge characteristics in the process of ultrasonic disintegration Gaz Woda i Technika Sanitarna 8 pp. 331–336. (in Polish)

  • Wang F. Ji M. & Lu S. (2006). Influence of ultrasonic disintegration on the dewaterability of waste activated sludge Environmental Progress 25 3 pp. 257–260.

  • Zawieja I. & Wolny L. (2011). Effect of Sonicator Power on the Biodegradability of Sewage Sludge Rocznik Ochrona Środowiska 13 pp. 1719–1731. (in Polish).

  • Zawieja I. Wolny L. & Włodarczyk E. (2013). From sludge to biogas Chemia Przemysłowa 5 pp. 38–42. (in Polish).

  • Zhang G. Zhang P. Yang J. & Chen Y. (2007). Ultrasonic reduction of excess sludge from the activated sludge system Journal of Hazardous Materials 145 3 pp. 515–519.

  • Zhang G. Zhang P. Yang J. & Liu H. (2008). Energy-efficient sludge sonication: Power and sludge characteristics Bioresource Technology 99 pp. 9029–9031.

  • Zielewicz E. (2007). Ultrasonic disintegration of excess sewage sludge in obtaining volatile fatty acids Scientific Papers of Silesian University of Technology Paper 58 Gliwice 2007. (in Polish)

  • Zielewicz E. (2010). Ultrasonic support of excess sludge hydrolysis Przegląd Komunalny 12 pp. 74–77. (in Polish)

  • Regulation of the Minister of Economy of 8th January 2013 concerning the criteria and procedures for admission for the storage of waste in a different type of landfill (Journal of Laws No. 0 item. 38). (in Polish)

  • National Waste Management Plan 2010 Resolution of the Ministers Council of a day 29th December 2006 concerning the “National Waste Management Plan 2010” Polish Monitor 2006 No. 90 item. 946. (in Polish)

Search
Journal information
Impact Factor


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 140 3
PDF Downloads 146 55 0