Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled pH: conditions for betaine removal / Efektywność tlenowej biodegradacji buraczanego wywaru melasowego przy nieregulowanym pH podłoża: określenie warunków usunięcia betainy

Open access


The aim of the study was to establish such conditions that would provide high-efficiency aerobic biodegradation of beet molasses vinasse with a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in batch processes without controlling the pH of the medium. Particular consideration was given to the betaine removal (the main pollutant of vinasse), which accounted for as much as 37.6% of total organic carbon. Biodegradation was performed in a stirred tank reactor at 27-63°C with initial pH (pH0) of 6.5 and 8.0. Efficiency of biodegradation was expressed in terms of reduction in SCODsum, which is a sum of SCOD (soluble chemical oxygen demand, i.e. COD determined after suspended solids separation) and theoretical COD of betaine. The values achieved at 27 and 36°C with pH0 = 8.0 exceeded 77.7%, whereas those obtained at 36 and 45°C with pH0 = 6.5 were higher than 83.6%. The high biodegradation efficiency obtained in the four processes is attributable to the betaine removal by the bacterial strains used in the study. Maximal extent of reduction in SCODsum (85.41%), BOD5 (97.91%) and TOC (86.32%), and also the fastest rate of biodegradation (1.17 g O2/l∙h) was achieved at 36°C and pH0 = 8.0

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Beaudet R. Gagnon C. Bisaillon J.G. & Ishaque M. (1990). Microbial aspects of aerobic thermophilic treatment of swine waste Applied and Environmental Microbiology 56 4 pp. 971-976.

  • [2] Becker P. Köster D. Popov M.N. Markossian S. Antranikian G. & Märkl H. (1999). The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions Water Research 33 3 pp. 653-660.

  • [3] Carta-Escobar F. Pereda-Martín J. Alvarez-Mateos P. Romero-Guzman F. Duran-Barrantes M.M. & Barriga-Mateos F. (2004). Aerobic purication of dairy wastewater in continuous regime. Part I: Analysis of the biodegradation process in two reactor configurations Biochemical Engineering Journal 21 2 pp. 183-191

  • [4] Caspi R. Foerster H. Fulcher C.A. Kaipa P. Krummenacker M. Latendresse M. Paley S. Rhee S.Y. Shearer A.G. Tissier C. Walk T.C. Zhang P. & Karp P.D. (2008). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases Nucleic Acids Research 36 pp. D623-D631.

  • [5] Cibis E. (2004). Aerobic biodegradation of starch stillages from rural distilleries by means of mixed culture of thermo- and mesophilic bacteria of the genus Bacillus. Dissertation Wroclaw University of Economics. (in Polish)

  • [6] Cibis E. Kent C.A. Krzywonos M. Garncarek Z. Garncarek B. & Miśkiewicz T. (2002). Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria Bioresource Technology 85 1 pp. 57-61.

  • [7] Cibis E. Krzywonos M. & Miśkiewicz T. (2006). Aerobic biodegradation of potato slops under moderate thermophilic conditions: Effect of pollution load Bioresource Technology 97 4 pp. 679-685.

  • [8] Cibis E. Krzywonos M. Trojanowska K. Miśkiewicz T. & Ryznar A. (2004). Biodegradation of potato slops with a mixed population of bacteria of the genus Bacillus - determination of the process conditions Electronic Journal of Polish Agricultural Universities Series: Food Science and Technology 7 2 (http://www.ejpau.media.pl/volume7/issue2/food/art-01.html (1.03.2013))

  • [9] Cibis E. Ryznar-Luty A. Krzywonos M. Lutosławski K. & Miśkiewicz T. (2011). Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: Influence of temperature and pH on the Progress and efficiency of the process Journal of Environmental Management 92 7 pp. 1733-1739.

  • [10] Couillard D. & Zhu S. (1993). Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery Environmental Pollution 79 2 pp. 121-126.

  • [11] Fang M. Wong M.H. & Wong J.W.C. (2001). Digestion activity of thermophilic bacteria isolated from ash-amended sewage sludge compost Water Air and Soil Pollution 126 1-2 pp. 1-12.

  • [12] Focht R.L. Schmidt F.H. & Dowling B.B. (1956). Colorimetric determination of betaine in glutamate process and liquor Journal of Agricultural and Food Chemistry 4 pp. 546-548.

  • [13] Gil-Pena M. Gutierrez M.J. Amo E. & Schnabel I. (1987). Acidogenic degradation of the nitrogen fraction in vinasse Biotechnology Letters 9 8 pp. 587-592.

  • [14] GRFA (http://www.globalrfa.org/pr_021111.php (10.12.2011))

  • [15] Handbook of Photometrical Operation Analysis. Dr. Lange (2000). BDB 079.

  • [16] Henze M. Harremoës P. la Cour Jansen J. & Arvin E. (2002). Wastewater Treatment: Biological and Chemical Processes 3rd ed. Springer-Verlag Berlin Heidelberg 2002.

  • [17] Jain N. Nanjundaswamy C. Minocha A.K. & Verma C.L. (2001). Isolation screening and identification of bacterial strains for degradation of predigested distillery wastewater Indian Journal of Experimental Biology 39 1 pp. 490-492.

  • [18] Jimenez A. M. Borja. R. & Martin A. (2003). Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater Process Biochemistry 38 9 pp. 1275-1284.

  • [19] Jimenez A.M. Borja R. Martin A. & Raposo F. (2006). Kinetic analysis of the anaerobic digestion of untreated vinasses and vinasses previously treated with Penicillium decumbens Journal of Environmental Management 80 4 pp. 303-310.

  • [20] Juteau P. Tremblay D. Ould-Moulaye C.B. Bisaillon J.G. & Beaudet R. (2004). Swine waste treatment by self-heating aerobic thermophilic bioreactors Water Research 38 3 pp. 539-546.

  • [21] Kosseva M.R. Kent C.A. & Lloyd D.R. (2001). Thermophilic bioremediation of whey: effect of physico-chemical parameters on the efficiency of the process Biotechnology Letters 23 20 pp. 1675-1679.

  • [22] Krzywonos M. Cibis E. & Miśkiewicz T. (2002). Biodegradation of the potato slops with a mixed population of aerobic bacteria - optimisation of temperature and pH Polish Journal of Food and Nutrition Sciences 11/52 4 pp. 13-18.

  • [23] Krzywonos M. Cibis E. Miśkiewicz T. & Kent C.A. (2008). Effect of temperature on the efficiency of the thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage) Bioresurce Technology 99 16 pp. 7816-7824.

  • [24] Krzywonos M. Cibis. E Lasik M. Nowak J. & Miśkiewicz T. (2009). Thermo- and mesophilic aerobic biodegradation of high-strength distillery wastewater (potato stillage) - Utilisation of main carbon sources Bioresurce Technology 100 9 pp. 2507-2514.

  • [25] LaPara T.M. & Alleman J.E. (1999). Thermophilic aerobic biological wastewater treatment Water Research 33 4 pp. 895-908.

  • [26] LaPara T.M. Nakatsu C.H. Pantea L. M. & Alleman J.E. (2002). Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE Water Research 36 3 pp. 638-646.

  • [27] Lasik M. & Nowak J. (2006). Thermophilic aerobic biodegradation of food industry wastewater Biotechnologia 3 74 pp. 98-112. (in Polish)

  • [28] Lasik M. Nowak J. Krzywonos M. & Cibis E. (2010). Impact of batch repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater Bioresurce Technology 101 10 pp. 3444-3451.

  • [29] Leblanc L. Gouffi K. Leroi F. Hartke A. Blanco C. Auffray Y. & Pichereau V. (2001). Uptake of choline from salmon flesh and its conversion to glycine betaine in response to salt stress in Shewanella putrefaciens International Journal of Food Microbiology 65 1-2 pp. 93-103.

  • [30] Madejon E. Lopez R. Murillo J.M. & Cabrera F. (2001). Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambiosol soil in the Guadalquivir river valley (SW Spain) Agriculture Ecosystems and Environment 84 1 pp. 55-65.

  • [31] Malladi B. & Ingham S.C. (1993). Thermophilic aerobic treatment of potato-processing wastewater World Journal of Microbiology and Biotechnology 9 1 pp. 45-49.

  • [32] Martin M.A. Raposo F. Borja R. & Martin A. (2002). Kinetic study of the anaerobic digestion of vinasse pretreated with ozone ozone plus ultraviolet light and ozone plus ultraviolet light in the presence of titanium dioxide Process Biochemistry 37 7 pp. 699-706.

  • [33] Merzouki M. Delgenes J.P. Bernet N. Moletta R. & Benlemlih M. (1999). Polyphosphate- -accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors Current Microbiology 38 1 pp. 9-17.

  • [34] Mohana S. Acharya B.K. & Madamwar D. (2009). Distillery spent wash: Treatment technologies and potential applications. A review Journal of Hazardous Materials 163 1 pp. 12-25.

  • [35] Murphy J.D. & Power N.M. 2008. How can we improve the energy balance of ethanol production from wheat? Fuel 87 10-11 pp. 1799-1806.

  • [36] Nandy T. Shastry S. & Kaul S.N. (2002). Wastewater management in a cane molasses distillery involving bioresource recovery Journal of Environmental Management 65 1 pp. 25-38.

  • [37] Rutkowska B. Szulc W. Łabętowicz J. & Gutowska A. (2008). Possibilities of the Agricultural Use of Decoctions from the Alcohol-Distilling Industry Archives of Environmental Protection 34 3 pp. 163-168.

  • [38] Ryznar-Luty A. Krzywonos M. Cibis E. & Miśkiewicz T. (2008). Aerobic biodegradation of vinasse by a mixed culture of bacteria of the genus Bacillus: optimization of temperature pH and oxygenation state Polish Journal of Environmental Studies 17 1 pp. 101-112.

  • [39] Sapronov A.R. (1963). Quantitative determination of colorants in the sugar industry products Sacharnaia promyšlennost CCCP 37 pp. 32-35. (in Russian)

  • [40] Satyawali Y. & Balakrishnan M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review Journal of Environmental Management 86 3 pp. 481-497.

  • [41] Staton K.L. Alleman J.E. Pressley R.L. & Eloff J. (2001). 2nd Generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements. (Proceedings of Water Environment Federation WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference Biosolids 2001: Building Public Support. Water Environment Federation).

  • [42] Suvilampi J. & Rintala J. (2003). Thermophilic aerobic wastewater treatment process performance biomass characteristics and effluent quality Reviews Environmental Science and Biotechnology 2 1 pp. 35-51.

  • [43] Thalasso F. van der Burgt J. O’Flaherty V. & Colleran E. (1999). Large-scale anaerobic degradation of betaine Journal of Chemical Technology and Biotechnology 74 12 pp. 1176-1182.

  • [44] Tiirola M. A. Suvilampi J.E. Kulomaa M.S. & Rintala J.A. (2003). Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR) Water Research 37 10 pp. 2259-2268.

  • [45] Tripathi C.R. & Allen D.G. (1999). Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent Water Research 33 3 pp. 836-846.

  • [46] Wilkie A.C. Riesedel K.J. & Owens J.M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstock Biomass and Bioenergy 19 2 pp. 63-102.

Journal information
Impact Factor

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 250 90 2
PDF Downloads 107 50 2