Post-Digestion Liquor Treatment in the Method Combining Chemical Precipitation with Reverse Osmosis

Open access


The aim of the study was to develop an effective treatment of post-digestion liquors highly-loaded with biogenic and organic substances. The scope of the research project encompassed: mesophilic anaerobic digestion of waste activated sludge (WAS) as well as the treatment of post-digestion liquors, coming from the most appropriate HRT value of 25 days, in the process of ammonium magnesium phosphate (struvite) precipitation targeted at ammonia nitrogen binding and a subsequent reverse osmosis (RO) process. It was established that the method combining chemical precipitation and high-pressure filtration ensures a high degree of contaminants removal allowing for a direct release of treated liquors into the natural reservoir. However, in order to decrease the residual NH4+ concentration (6.1 mg NH4+/dm3) in the purified post-digestion liquors below the level allowing for a direct release to the natural reservoir, it turned out to be necessary to apply increased molar ratio of magnesium and phosphates (Mg:NH4+: PO43-= 1.5:1:1.5).

[1] Ahn, Y.H., Hwang, I.S. & Min, K.S. (2004). ANAMMOX and partial denitrifition in anaerobic nitrogen removal from piggery waste, Water Science Technology, 49, 145–153.

[2] Appels, L., Baeyens, J., Degréve, J. & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge, Progress in Energy and Combustion Science, 34, 755-781, DOI:10.1016/j. pecs.2008.06.002.

[3] Bitton, G. (2005). Wastewater microbiology, Wiley-Liss, New Jersey.

[4] Boe, K. (2006). Online monitoring and control of the biogas process, Technical University of Denmark, Ph.D. Thesis.

[5] Bohdziewicz, J. & Kuglarz, M. (2012). Doczyszczanie wód po fermentacji osadów ściekowych metodą łączącą chemiczne strącanie i proces odwróconej osmozy, Monografie: Polska Akademia Nauk. Komitet Inżynierii Środowiska, 96, 63–72.

[6] Bohdziewicz, J. & Kuglarz M. (2013). Treatment of post-digestion liquors with the application of struvite precipitation and reverse osmosis, Desalination and Water Treatment, 51, 366–371, DOI: 10.1080/19443994.2012.715074.

[7] Bonmatἱ, A. & Xavier, F. (2003). Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion, Waste Management, 23, 261–272, DOI:10.1016/S0956-053X(02)00144-7.

[8] Callaghan, F.J. Wase, D.A. J., Thayanithy, K. & Forster, C.F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure, Biomass and Bioenergy, 22, 71–77, DOI:10.1016/S0961-9534(01)00057-5.

[9] Castrillón, L., Fernandez-Nava, Y., Ulmanu, M., Anger, I. & Maranón, E. (2010). Physico-chemical and biological treatment of MSWlandfi ll leachate, Waste Management, 30, 228-235, DOI:10.1016/j. wasman.2009.09.013.

[10] Chen, Y., Cheng, J.J. & Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review, Bioresource Technology, 99, 4044–4064, DOI:10.1016/j.biortech.2007.01.057.

[11] Cheremisinoff, N.P. (2002). Handbook of Water and Wastewater Treatment Technologies, BH, Woburn.

[12] Ćwikła, J. & Konieczny, K. (2009). Reduction of the biogenic compounds level in wastewater treatment plant by purification of sludge by means of reverse osmosis, Proceedings of National Congress of Environmental Engineering, Lublin, 1, 55–62.

[13] Dohányos, M., Zábranská, J., Kutil, J. & Jeniček, P. (2004). Improvement of anaerobic digestion of sludge, Water Science and Technology, 49, 89–96.

[14] Eaton, A.D., Clesceri, L.S. & Greenberg, A.E. (1995). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington.

[15] EU Council Directive of 21 May 1991 (91/271/EWG) concerning urban wastewater, 100 000 inhabitants and above.

[16] Gerardi, M.H. (2003). The microbiology of anaerobic digesters, Wiley-Interscience, New Jersey.

[17] Gerardi, M.H. (2006). Wastewater Bacteria, Wiley-Interscience, New Jersey.

[18] Jaffer, Y., Clark, T.A., Pearce, P. & Parsons, S.A. (2002). Potential phosphorus recovery by struvite formation, Water Res., 36, 1834–1842, DOI:10.1016/S0043-1354(01)00391-8.

[19] Kampas, P., Parsons, S.A., Pearce, P., Ledoux, S., Vale, P., Churchley, J. & Cartmell, E. (2007). Mechanical sludge disintegration for the production of carbon source for biological nutrient removal, Water Research, 41, 1734–1742, DOI:10.1016/ j.watres.2006.12.044.

[20] Karakashev, D., Schmidt, J.E. & Angelidaki, I. (2008). Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure, Water Research, 42, 4083–4090, DOI:10.1016/j. watres.2008.06.021.

[21] Kuglarz M. & Bohdziewicz, J. (2010). Kofermentacja bioodpadów komunalnych i osadów ściekowych wraz z membranowym oczyszczaniem cieczy pofermentacyjnej, Monografie: Polska Akademia Nauk. Komitet Inżynierii Środowiska, 65, 317–330.

[22] Marti, N., Ferrer, J. & Bouzas, A. (2008) Optimalization of sludge management to enhance phosphorus recovery in WWTP, Water Research, 42, 4609–4618, DOI:10.1016/j.watres.2008.08.012.

[23] Marti, N., Bouzas, A., Seco, A. & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes, Chemical Engineering, 141, 67–74, DOI: 10.1016/j.cej.2007.10.023.

[24] Masse, L., Massé, D.I. & Pellerin, Y. (2008). The effect of pH on the separation of manure nutrients with reverse osmosis membranes, Journal of Membrane Science, 325, 914–919, DOI: 10.1016/j. memsci.2008.09.017.

[25] Mata-Alvarez, J., Mace, S. & Llabres, P. (2000). Anaerobic digestion of solid wastes. An overview of research achievements and perspectives, Bioresource Technology, 74, 3–16, DOI: DOI:10.1016/S09608524(00)00023-7.

[26] Miles, A. & Ellis, T.G. (2001). Struvite precipitation potential for nutrient recovery from anaerobically treated wastes, Water Science and Technology, 43, 259–266.

[27] Møller, H.B., Lund, I. & Sommer, S.G. (2000). Solid-Liquid separation of livestock slurry: effi ciency and cost. Bioresource Technology, 74, 223–229, DOI:10.1016/S0960-8524(00)00016-X.

[28] Münch, E.V. & Barr, K. (2001). Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams, Water Resource, 35, 151–159, DOI:10.1016/S0043-1354(00)00236-0.

[29] Nelson, N.O., Mikkelsen, R.L. & Hesterberg, D.L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg:P ratio and determination of rate constant, Bioresource Technology, 89, 229–236, DOI:10.1016/S0960-8524(03)00076-2.

[30] Pastor, L., Mangin, D., Ferrer, J. & Seco, A. (2010). Struvite formation from the supernatants of an anaerobic digestion pilot plant, Bioresour. Technol., 101, 118–125, DOI:10.1016/j.biortech.2009.08.002.

[31] Ponsá, S., Gea, T., Alerm, L., Cerezo, J. & Sánchez, A. (2008). Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process, Waste Management, 28, 2735–2742, DOI:10.1016/j.wasman.2007.12.002.

[32] Ruth, F.W. & Matthews, R.A. (2003). Environmental Engineering, Fourth Edition, BH, USA.

[33] Ryu, H.D., Kim, D. & Lee, S.I. (2008). Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater, Journal of Hazardous Materials, 156, 163–169, DOI:10.1016/j. jhazmat.2007.12.010.

[34] Sawyer, C.N., McCarty, P.L. & Parkin, G.F. (2003). Chemistry for environmental engineering and science, McGraw-Hill, New York.

[35] Soares, A., Kampas, P., Maillard, S., Wood, E. & Brigg, J. (2010). Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal, Journal of Hazardous Materials, 175, 733–739, DOI:10.1016/j.jhazmat.2009.10.070.

[36] Stanbury, P.F., Whitaker, A. & Halls, J. (1995). Principles of fermentation technology, BH, Great Britain.

[37] Sterling, Jr. M.C., Lacey, R.E., Engler, C.R. & Ricke, S.C. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure, Bioresource Technology, 77, 9–18, DOI:10.1016/S0960-8524(00)00138-3.

[38] Tchobanoglous, G., Burton, F. & Stensel, H.D. (2003). Wastewater Engineering. Treatment, Disposal, Reuse. Metcalf and Eddy, 4th edition, Mc Gaw-Hill Inc. New York.

[39] Thörneby, L., Persson, K. & Trägárdh, G. (1999). Treatment of Liquid Effluents from dairy cattle and pigs usung reverse osmosis, Journal of Agricultural Engineering Research, 73, 159–170, DOI:10.1006/ jaer.1998.0405.

[40] Uludag-Demirer, S., Demirer, G.N. & Chen, S. (2005). Ammonia removal from anaerobically digested dairy manure by struvite precipitation, Process Biochemistry, 40, 3667–3674, DOI:10.1016/j. procbio.2005.02.028.

[41] Uysal, A., Yilmazel, Y.D. & Demirer, G.N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester, Journal of Hazardous Materials, 181, 248–254, DOI:10.1016/j.jhazmat.2010.05.004.

[42] Vyrides, I., Conteras, P.A. & Stuckey, D.C. (2010). Post-treatment of a submerged anaerobic membrane bioreactor (SAMBR) saline effluent using powdered activated carbon (PAC), Journal of Hazardous Materials, 177, 836–841, DOI:10.1016/j.jhazmat.2009.12.109.

[43] Xiaohui, L., Norio, S., Chuanping, F. & Takaaki, M. (2007). Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification, Journal of Hazardous Materials, 145, 391–397, DOI:10.1016/j.jhazmat.2006.11.027.

[44] Yetilmezsoy, K. & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effl uent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, Journal of Hazardous Materials, 166, 260–269, DOI:10.1016/j.jhazmat.2008.11.025.

[45] Zhang, T., Ding, L. & Ren, H. (2009). Pretreatment of ammonium removal from landfill leachate by chemical precipitation, Journal of Hazardous Materials, 166, 911–915, DOI:10.1016/j.jhazmat.2008.11.101.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 168 21
PDF Downloads 74 65 10