Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

Open access

Abstract

Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre) in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI) in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Valko M. Morris H. & Cronin M.T.D. (2005). Metals toxicity and oxidative stress Current Medicinal Chemitry 12 1161-1208.

  • [2] Proctor D.M. Otani J.M. Finley B.L. Paustenbach D.J. Bland J.A. Speizer N. & Sargent E.V. (2002). Is hexavalent chromium carcinogenic via ingestion? A weight-of-evidence review Journal of Toxicology and Environmental Health Part A 65 701-746.

  • [3] Amezcua-Allieri M.A. Lead R.J. & Rodriguez-Vazquez R. (2005). Changes of chromium behavior in soil during phenanthrene removal by Penicillium frequentans BioMetals 18 23-29.

  • [4] Davies F.T. Puryear J.D. Newton R.J. Egilla J.N. & Grossi J.A.S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration growth and gas exchange. Journal of Plant Nutrition 25 2389-2407.

  • [5] Mei B. Puryear J.D. & Newton R.J. (2002). Assessment of Cr tolerance and accumulation in selected plant species Plant and Soil 247 223-231.

  • [6] Shanker A.K. (2003). Physiological biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis Tamil Nadu Agricultural University Coimbatore India 2003.

  • [7] Cheung K.H. & Gu J.D. (2005). Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments World Journal of Microbiology and Biotechnology 21 213-219.

  • [8] Pei Q.H. Shahir S. Santhana Raj A.S. (2009). Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World Journal of Microbiology Biotechnology 251085-1093.

  • [9] Sau G.B. Chatterjee S. Sinha S. & Mukherjee S.K. (2008). Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Polish Journal of Microbiology 57 327-332.

  • [10] Rajkumar M. & Nagendran R. (2005). Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology 50 266-271.

  • [11] Faisal M. & Hasnain S. (2006). Plant growth by Brevibacterium under chromium stress Research Journal of Botany 1 24-29.

  • [12] Chatterjee S. Ballav Sau G. & Mukherjee S.K. (2009). Plant growth promotion by a hexavalent chromium reducing bacterial strain Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology Biotechnology 25 1829-1836.

  • [13] Jing Y.D. He Z.L. & Yang X.E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils Journal of Zhejiang University Science B 8192-207.

  • [14] Zhuang X.L. & Chen J. (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environment International 33 406-413.

  • [15] Sayel H. Bahafid W. Joutey T.N. Derraz K. Benbrahim K.F. Koraichi S.I. Ghachtouli N.E. (2012). Cr(VI) reduction by Enterococus gallinarum isolated from tannery waste-contaminated soil Annals of Microbiology 62 1269-1277.

  • [16] Dereeper A. Guignon V. Blac G. Audic S. Buffet S. Chevenet F. Dufayard J.F. Guindon S. Lefort V. & Lescot M. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. Jul 1; 36 (Web Server issue): W465-9. Epub 2008 Apr 19. (PubMed)

  • [17] Centre d'expertise en analyse environnementale du québec: Détermination du chrome hexavalent: méthode colorimétrique MA. 200 - CrHex 1.1. Ministère du Développement durable de l'Environnement et des Parcs du Québec 10 p. (2008).

  • [18] Pattanapipitpaisal P. Brown N.L. & Macaskie L.E. (2001). Chromate reduction and 16S rRNA identification of bacteria isolated from Cr(VI) contaminated site Applied Microbiology and Biotechnology 57 257-261.

  • [19] Steel R.G.D. & Torrie J.H. (1981). Principles and procedures of statistics a biometrical approach 2nd ed. McGraw Hill New York 1981.

  • [20] Megharaj M. Avudainayagam S. & Naidu R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste Current Microbiology 47 51-54.

  • [21] Michel C. Brugna M. Aubert C. Bernadac A. & Bruschi M. (2001). Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochrome c and hydro-genases Appllied Microbiology and Biotechnology 55 95-100.

  • [22] Hu X.W. Guo L.Y. Ming Z.G. Xin L. Xiao S.H. & Ging P.Q. (2009). Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa Transactions of Nonferrous Metals society of China 19 1336-1341.

  • [23] Faisal M. Hasnain S. (2005). Chromate resistant Bacillus cereus augments sunflower growth by reducing toxicity of Cr (VI) Journal of Plant Biology 48 2 187-194.

  • [24] Riaz S. Faisal M. & Hasnain S. (2010). Cicer arietinum growth promotion by Ochrobactrum intermedium and Bacillus cereus in the presence of CrCl3 and K2CrO4Annals of Microbiology 60 729-733.

  • [25] Srivastava S. Ahmad A.H. & Thakur I.S. (2007). Removal of chromium and pentachlorophenol from tannery effluents Bioresource Technology 98 1128-1132.

  • [26] Faisal M. & Hasnain S. (2005). Colonization of Vigna radiate roots by chromium resistant bacterial strains Ochrobactrum intermedium Bacillus cereus and Brevibacterium sp Chinese Journal of Applied and Environmental Biology 11 5 528-530.

Search
Journal information
Impact Factor


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 161 0
PDF Downloads 142 88 0