Ecological Features of Spontaneous Vascular Flora of Serpentine Post-Mining Sites in Lower Silesia

Open access


The aim of this study was to determine the ecological characteristics of vascular plants colonizing serpentine mining waste dumps and quarries in Lower Silesia. The investigated flora was analyzed with regard to species composition, geographical-historical status, life forms, as well as selected ecological factors, such as light and trophic preferences, soil moisture and reaction, value of resistance to increased heavy metals content in the soil, seed dispersal modes and occurrence of mycorrhiza. There were 113 species of vascular plants, belonging to 28 families, found on seven sites in the study. The most numerous families were Asteraceae, Poaceae, Fabaceae and Caryophyllaceae. Only 13% of all plants recorded occurred on at least five of the study sites. The most numerous were species related to dry grassland communities, particularly of the Festuco-Brometea class, which included taxa endangered in the region of Lower Silesia: Avenula pratensis, Salvia pratensis, Festuca valesiaca. Apophytes dominated in the flora of the investigated communities. Hemicryptophytes were the most numerous group and therophytes were also abundant. The serpentine mining waste dumps and querries hosted heliophilous species which prefer mesic or dry habitats moderately poor in nutrients, featuring neutral soil reaction. On two study sites 30% of the flora composition consisted of species that tolerate an increased content of heavy metals in the soil. Anemochoric species were the most numerous with regard to types of seed dispersal. Species with an arbuscular type of mycorrhiza were definitely dominant in the flora of all the study sites, however, the number of nonmycorrhizal species was also relatively high. It was suggested that both the specific characteristics of the habitats from serpentine mining and the vegetation of adjacent areas had a major impact on the flora composition of the communities in the investigated sites.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Allen E.B. & Allen M.F. (1980). Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming Journal of Applied Ecology 17 139-147.

  • [2] Amir H. Perrier N. Rigault F. & Jaffré T. (2007). Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils Plant and Soil 293 23-35.

  • [3] Brooks R.R. (1987). Serpentine and its vegetation a multidisciplinary approach Dioscordes Press pp. 455 Portland Oregon 1987

  • [4] Bzdon G. (2010). Segetal communities species in flora of selected gravel pits on the Siedlce Upland (in Polish) Fragmenta Agronomica 27(3) 34-43.

  • [5] Dziedzic K. Kozłowski S. Majerowicz A. & Sawicki L. (1979). Mineral resources of Lower Silesia pp. 510 Ossolineum Wrocław 1979

  • [6] Falihski B. (1972). Synantropization of the vegetation - an attempt to point out of the problem essence and main research directions Phytocenosis 1(3) 157-169.

  • [7] Fabiszewski J. (1993). The problems of plant-cover preservation in the area of the Śleza Hills Annales Silesiae 23 65-75.

  • [8] Fernandez S. Seoane S. & Merio A. (1999). Plant heavy metal concentrations and soil biological properties in agricultural serpentine soil Communications in Soil Science and Plant Analysis 30 1867-1884.

  • [9] Freitas H. Prasad M.N.V. & Pratas J. (2004). Analysis of serpentinophytes from north-east Portugal for trace metal accumulation - relevance to the management of mine environment Chemosphere 54 1625-1642.

  • [10] Gabbirielli R. Pandolfin T. Vergnano I.O. & Palandrim R. (1990). Comparison of two serpentine species with different nickel tolerance strategies Plant and Soil 122 271-277.

  • [11] Griffioen W.A.J. Ietswaart J.H. & Ernst W.H.O. (1994). Mycorrhizal infection of an Agrostis capilaris population on a copper contaminated soil Plant and Soil 158 83-89.

  • [12] Harley J.L. & Harley E.L. (1987). A check-list of mycorrhiza in the British flora New Phytologist Supplement 105 1-102.

  • [13] Hopkins N.A. (1986). Mycorrhizae in California serpentine grassland community Canadian Journal of Botany 65 484-487.

  • [14] Kabała C. & Szlachta T. (2000). Total contents and soluble forms of trace element in serpentinite wastes of the Nasławice quarry Zeszyty Problemowe Postępów Nauk Rolniczych 471 959-966.

  • [15] Kasowska D. (2001). Vascular plants of the sand dump close to Strzegom and the basalt quarry near Złotoryja Annales Silesiae 31 129-137.

  • [16] Kasowska D. (2002). Mycorrhizal status of plants in two successional stages on spoil heaps from fireloam mining in Lower Silesia (SW Poland) Acta Societatis Botanicorum Poloniae 71 155-161.

  • [17] Kasowska D. (2007). Flora of xerothermic grasslands and ruderal communities of the Nasławice serpentine quarry (Kamienny Grzbiet Ridge Śleza Massif Annales Silesiae 35 105-113.

  • [18] Kęcki Z. Dajdok Z. & Szczęśniak E. (2003). The red list of vascular plants of Lower Silesia. endangered vascular plants of Lower Silesia Instytut Biologii Roślin Uniwersytet Wrocławski Polskie Towarzystwo Przyjaciól Przyrody „Pro Natura” pp. 9-65 Wrocław 2003

  • [19] Kornaś J. (1981). Mechanisms and effects of the human impact upon the flora Wiadomości Botaniczne 25(3) 165-182.

  • [20] Koszelnik-Leszek A. (2007). Content of selected heavy metals in soil and Silene vulgaris in serpentine soil Rocznik Gleboznawczy 58 1 2 63-68.

  • [21] Koszelnik-Leszek A. (2007). Structure of leaf bland and content of nickel chromium and zinc in Silene vulgaris (Moench) Garcke and soil on the serpentine spoil mount at Wirki Zeszyty Problemowe Postępów Nauk Rolniczych 520 227-234.

  • [22] Koszelnik-Leszek A. & Wall Ł. (2009). The estimation of selected heavy metals and macroelements content in Dianthus carthusianorum L. in serpentine damp and natural habitat Zeszyty Problemowe Postępów Nauk Rolniczych 541 245-253.

  • [23] Kozłowski S. (1996). Mineral resources of Lower Silesia pp. 353 Warszawa 1996.

  • [24] Kwiatkowski P. (1999). Natural reclaimation of limenstone and basalt excavations in the Kaczawskie Mountains J. Malewski (ed.): Pits reclamation 109-125 Wrocław 1999

  • [25] Leyval C Turnau K. & Haselwandtler K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: physiological ecological and applied aspects Mycorrhiza 7 139-153.

  • [26] Malpas J. (1992). Serpentine and the geology of serpentinized rocks Roberts B.A. Proctor J. (eds): The ecology of areas with serpentinized rocks a world view. Geobotany 17 7-30 Kluwer Academic Publishers Dordrecht The Netherlands (1992).

  • [27] Matuszkiewicz W. (2007). Guide for identification of the plant communities of Poland pp. 537 Warszawa 2007.

  • [28] Mirek Z. Piękoś-Mirkowa H. Zając A. Zając M. (2002). Flowering plants and pteridophytes of Poland a checklist W. Szafer Institute of Botany Polish Academy of Sciences pp. 442 Kraków 2002.

  • [29] Müller-Schneider P. (1986). Diasporology of the Spermatophytes of the Grisons (Switzerland) Veroffentlichungen des geobotanischen Institutes der ETH Zurich 1986.

  • [30] Pasierbihski A. Rostahski A. (2001). The diversity of vascular flora of mining spoil heaps found in woodland areas of the Katowice agglomeration Natura Silesiae Superioris Suplement 19-31.

  • [31] Pawłowska T.E. Błaszkowski J. Riihling A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland Mycorrhiza 6 499-505.

  • [32] Perrier N. Amir H. & Colin F. (2006). Occurrence of mycorrhizal symbioses in the metal-rich latertic soils of the Konirambo Massif New Caledonia Mycorrhiza 16 449-458.

  • [33] Philips J. & Hayman D.S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection Transactions of the British Mycological Society 55 158-161.

  • [34] Rostahski A. (1998). Anthropophytes and apophytes in colonization process on the post-industrial heaps in Upper Silesia region Phytocoenosis 10 199-201.

  • [35] Rostahski A. & Zhukov S. (2001). Comparison of the flora of minig spoil heaps of Upper Silesia (Poland) and Donetsk Coal District (Ukraine) Natura Silesiae Superioris Suplement 67-77.

  • [36] Sarosiek J. & Sadowska A. (1961). The ecology of plants of serpentine soils Wiadomości Botaniczne 5 1 73-86.

  • [37] Shetty K.G. Banks M.K. Hetrick B.A. & Schwab A.P (1994). Biological characterization of a southeast Kansas mining site Water Air & Soil Pollution 78 169-177.

  • [38] Skubała K. (2011). Vascular flora of sites contaminated with heavy metals on the example of two post-industrial spoil heaps connected with manufacturing of zinc and lead products in Upper Silesia Archives of Environmental Protection 37 1 57-74.

  • [39] Smith S.E. & Read D.J. (2008). Mycorrhizal symbiosis. 3rd edn. Academic Press p. 787 London 2008.

  • [40] Sołtysiak J. & Koszelnik-Leszek A. (2009). Vascular flora and chemical properties of serpentine heap on Sobótka near Wrocław) Annales Silesiae 34 101-106.

  • [41] Stojanowska W. (1973). The flora of quarries of the Lower Silesia Acta Universitatis Wratislaviensis 198 17 35-55.

  • [42] Sulej J. Ślesak E. Leonowicz-Babiak K. & Buczek J. (1970). Tentative explanation of dwatrfish growth of plants on serpentine soils I. Physico-chemical biological properties and mineral elements of serpentine soils Acta Societatis Botanicorum Poloniae 39 3 405-419.

  • [43] Szarek-Łukaszewska G. & Grodziehska K. (2007). Vegetation of a post-mining pit (Zn/Pb ores) three year study of colonization Polish Journal of Ecology 55 2 261-282.

  • [44] Szarek-Łukaszewska G. (2009). Vegetation of reclaimed and spontaneously vegetated Zn-Pb mine wastes in Southern Poland Polish Journal of Environmental Studies 18 4 717-733.

  • [45] Szczesniak E. (2003). Rare and threatened species of thermophilous swards in Lower Silesia Kącki Z. (ed.): Endangered vascular plants of Lower Silesia Instytut Biologii Roślin pp. 9-65 Wrocław 2003.

  • [46] Szczesniak E. & Kącki Z. (2004). Materials to the flora of Kamienny Grzbiet Ridge (Śleza Massif Sudety Foreland Acta Botanica Silesiaca 1 85-90.

  • [47] Szczesniak E. (2005). Species of Festuca ovina group (Poaceae) on the serpentine rocks in the Sudety Foreland Acta Botanica Silesiaca 2 121-129.

  • [48] Turnau K. (1998). Heavy metal content and localization in mycorrhizaal Euphorbia cyparissias from zinc wastes in southern Poland Acta Societatis Botanicorum Poloniae 67 1 105-113.

  • [49] Turnau K. (2003). Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperacumulating members of Asteraceae from ultramafic soils in South Africa Mycorrhiza 13 185-190.

  • [50] Wang B. & Qiu Y.L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants Mycorrhiza 16 299-363.

  • [51] Wierzbicka M. Panufnik D. (1998). The adaptation of Silene vulgaris to the growth on a calamine waste heap (S. Poland) Environmental Pollution 101 415-426.

  • [52] Weber J. (1981). Genesis and properties of soil derived from serpentinites in Lower Silesia Part II. Physico-chemical properties Rocznik Gleboznawczy 32 2 145-159.

  • [53] Wojtuh B. Fabiszewski J. & Żołnierz L. (1993). The ecological specificity of xerothermic swards on serpentinite rocks in the Massif of Śleza Annales Silesiae 23 93-107.

  • [54] Zajac E.U. & Zajac A. (1975). The list of archeophytes occurring in Poland Zeszyty Naukowe Uniwersytetu Jagiellohskiego Prace Botaniczne 3 7-15.

  • [55] Zajac E.U. & Zajac A. (1992). A tentative list of segetal and ruderal apophytes in Poland Zeszyty Naukowe Uniwersytetu Jagiellohskiego Prace Botaniczne 24 11-23.

  • [56] Zając A. Zajac M. & Tokarska-Guzik B. (1998). Kenophytes in the flora of Poland: list status and origin Phytocoenosis 10 107-115.

  • [57] Zarzycki K. Trzcińska-Tacik H. Różahski W. Szeląg Z. Wołek J. Korzeniak U. (2002). Ecological indicator values of vascular plants of Poland W. Szafer Institute of Botany Polish Academy of Sciences pp. 183 Kraków 2002.

  • [58] Żołnierz L. (1993). Serpentine ferns in the Śleza Massif Annales Silesiae 23 77-91.

  • [59] Żołnierz L. (2007). Grasslands on serpentines in Lower Silesia (SW Poland) - some aspects of their ecology Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu 555 1-231.

  • [60] Żołnierz L. (1993). Nickel in plants growing on serpentine soils of Lower Silesia K. Pendias (ed.): Chromium nickel and aluminum in the environment - ecological and analytical problems Ossolineum Wrocław Warszawa Kraków Zeszyty Naukowe 5 159-166.

Journal information
Impact Factor

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2018: 1.71

SCImago Journal Rank (SJR) 2018: 0.489
Source Normalized Impact per Paper (SNIP) 2018: 1.011

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 314 121 0
PDF Downloads 196 97 3