The Application of PCR Reaction for Identification of MHB Bacteria Species

Open access

Abstract

This study characterizes mycorrhiza helper bacteria (MHB) from selected unpolluted locations as well as subjected to industrial emissions. To determine the species of bacteria isolated from the roots of ectomycorrhizal pine and birch, a method based on the sequence analysis of a 16S rRNA gene was used. The isolated bacteria were initially characterized by available biochemical methods and phenotypic observation. On the selected bacteria representatives isolation of DNA was performed, on which the PCR reaction was carried out. In this way amplified samples were automatically sequenced and the obtained results were compared to public databases. Among the isolated bacteria Pseudomonas fluorescens SBW25 and Burkholderia xenovorans LB400 species were dominant.

[1] Aspray T.J., Jones E.E., Whipps J.M. & Bending G.D. (2006). Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis, FEMS Microbiology Ecology, 56, 25-33.

[2] Aspray T.J., Frey-Klett P., Jones E.E., Whipps J.M., Garbaye J. & Bending G.D. (2006). Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation, Mycorrhiza 16, 533-541.

[3] Badura L. (2006). Rozważania nad rolą mikroorganizmów w glebach, Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu, Rolnictwo, 89, 546, 13-23.

[4] Barea J.M., Pozo M.J., Azcón R. & Azcón-Aguilar C. (2005). Microbial co-operation in the rhizosphere, Journal of Experimental Botany, 56, 417, 1761-1778.

[5] Bending G.D., Poole E.J., Whipps J.M. & Read D.J. (2002). Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth, FEMS Microbiology Ecology, 39, 219-227.

[6] Bianciotto V., Lumini E., Lanfranco L., Minerdi D., Bonfante P. & Perotto S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae, Applied and Environmental Microbiology, 66, 10, 4503-4509.

[7] Brulé C, Frey-Klett P., Pierrat J.C., Courrier S., Gérarad F., Lemoine M.C., Rousselet J.L., Sommer G. & Garbaye J. (2001). Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens, Soil Biology and Biochemistry, 33, 1683-1694.

[8] Burbianka M. & Pliszka A. (1997). Mikrobiologia żywności. Mikrobiologiczne metody badah produktów żywnościowych. PZWL.

[9] Dahm H. & Strzelczyk E. (2004). Żyjące lecz nie dające się hodować bakterie, Postępy Mikrobiologii, 43, 3, 251-265.

[10] Deveau A., Palin B., Delavuelle C, Peter M., Pierrat J.C., Sarniguet A., Garbaye J., Martin F. & Frey-Klett P. (2007). The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific the ectomycorrhizal fungus Laccaria bicolor S238N, New Phytologist, 175, 743-755.

[11] Duponnois R. & Planchette C.A (2003). Mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species, Mycorrhiza. 13, 85-91.

[12] Founoune H., Duponnoise R., Bâ A.M., Sall S., Branget I., Lorquin J., Neyra M. & Chotte J.L. (2002). Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba, New Phytologist 153, 81-89.

[13] Frey P., Frey-Klett P., Garbaye J., Berge O. & Heulin T. (1997). Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas Fir-Laccaria bicolor mycorhizosphere, Applied and Environmental Microbiology, 63, 1852-1860.

[14] Garbaye J. (1994). Helper bacteria: a new dimension to the mycorrhizal symbiosis, New Phytologist, 128, 197-210.

[15] Gottlieb M. (2002). Czynniki determinujące zdolność bakterii z rodzaju Pseudomonas do kolonizacji systemu korzeniowego roślin, Postępy Mikrobiologii, 41, 3, 277-297.

[16] Izumi H., Moore E.R.B., Killham K., Alexander I.J. & Anderson I.C. (2007). Characterisation of endobacterial communities in ectomycorrhizas by DNA- and RNA-based molecular methods, Soil Biology & Biochemistry, 39, 891-899.

[17] Janssen PH. (2006). Identifying the dominant soil bacteria taxa in libraries of 16S rRNA and 16S rRNA genes, Applied and Environmental Microbiology, 72, 3, 1719-1728.

[18] Krupa P. (2004). Ektomikoryzy i ich znaczenie dla drzew rosnących na terenach zanieczyszczonych metalami cięzkimi. Wydawnictwo Uniwersytetu Śląskiego. Katowice 2004.

[19] Linderman R.G. (1998). Mycorrhiza interactions with the rhizosphere microflora: The Mycorrhizosphere Effect, Phytopatology 78, 366-371.

[20] Poole E.J., Bending G.D., Whipps J.M. & Read D.J. (2001). Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro, New Phytologist 151, 743-751.

[21] Tarkka M.T & Frey-Klett P. (2008). Mycorrhiza helper bacteria [in:] Varna, A. (Ed.), Mycorrhiza. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. Springer-Verlag, Berlin Heidelberg 2008.

[22] Więckowicz M. (2009). Molekularne metody identyfikacji mikroorganizmów w złożonych ekosystemach, Postqpy Mikrobiologii, 48, 1, 67-73.

[23] Wrótniak W. & Dahm H. (2001). Liczebność, typy morfologiczne i niektóre właściwości fizjologiczne bakterii wyizolowanych z owocników grzybów ektomikoryzowych. [in:] Dahm, H. (Ed.) Drobnoustroje środowiska glebowego. Aspekty fizjologiczne, biochemiczne, genetyczne, Uniwersytet Mikołaja Kopernika w Toruniu Wydawnictwo Adam Marszałek, Toruń 2001.

[24] Silby M.W., Cerdeño-Tárraga A.M., Vernikos G.S., Giddens S.R., Jackson R.W., Preston M.G., Zhang X., Moon Ch.D., Gehirg S.M., Godfrey S. Ac., Knight Ch.G., Malone J.G., Robinson Z., Spiers A.J., Harris S., Challis G.L., Yaxley A.M., Harris D., Seeger K., Murphy L., Rutter S., Squares R., Quail M.A, Saunders E., Mavromatis K., Brettin T.S., Bentley S.D., Hothersall J., Stephens E., Thomas Ch. M. Parkhill, J. Levy, S.B., Rainey P.B. & Thomson N.R. (2009). Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens, Genome Biol, 10, 5, R51, doi:10.1186/gb-2009-10-5-r51.

[25] Suau A., Bonnet R., Sutren M., Godon J-J., Gibson G.R., Collins M.D. & Dore J. (1999). Direct analysis of genus encoding 16S rRNA from complex communities reveals many novel molecural species within the human gut. Applied and Environmental Microbiology. 65 (11): 4799-4807.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 124 13
PDF Downloads 60 57 8