Trace Metals in Soils and Several Brassicaceae Plant Species from Serpentine Sites of Serbia

Gordana M. Tomović 1 , Nevena Lj. Mihailović 2 , Ahmed F. Tumi 1 , Boško A. Gajić 3 , Tomica D. Mišljenović 1 ,  and Marjan S. Niketić 4
  • 1 Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
  • 2 Institute for the Application of Nuclear Energy – INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
  • 3 Laboratory of Soil Physics, Institute of Land Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11081 Belgrade, Serbia
  • 4 Natural History Museum, Njegoševa 51, 11000 Belgrade, Serbia


Serpentine soils from 16 sample points in Serbia as well as the roots and shoots of eight Brassicaceae family species: Aethionema saxatile, Alyssum montanum, Alyssum repens, Cardamine plumieri, Erysimum linariifolium, Erysimum carniolicum, Isatis tinctoria, Rorippa lippizensis, were analyzed with regard to their concentrations of P, K, Fe, Ca, Mg, Ni, Zn, Mn, Cu, Cr, Cd, and Pb. Most of the soil samples were typical of ultramafic sites with low concentrations of P, K and Ca and high concentrations of Mg, Fe, Ni and Zn. Ca/Mg ratio was <1 in most soil samples and Brassicaceae plants. Only in A. montanum, A. repens, E. linariifolium and R. lippizensis was the Ca/Mg ratio >1. The levels of P, K, Fe and Zn were high, Mn and Cu occurred in low amounts, whereas Cr, Cd, Co and Pb were only traceable. In the roots and shoots of A. montanum and A. repens the measured concentrations of Ni were 657 mg kg-1 and 676 mg kg-1 respectively, which is the first instance that such high concentrations of Ni were detected in these two species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Antosiewicz, D.M. (2004). Study of calcium-dependent lead tolerance on plants differing in their level of Ca-defi ciency tolerance, Environmental Pollutution, 134, 23-34.

  • [2] Babalonas, D., Karataglis, S., & Kabassakalis, V. (1984). The Ecology of Plant Populations Growing on Serpentine Soils, Phyton, 24 (2), 225-238.

  • [3] Baker, A.J.M. (1981). Accumulators and excluders - strategies in the response of plants to heavy metals, Journal of Plant Nutrition, 3, 643-654. 4] Baker, A.J.M., & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81-126.

  • [5] Bani, A., Echevarria, G., Mullaj, A., Reeves, R., Morel, J.L., & Sulçe, S. (2009). Nickel Hyperaccumulation by Brassicaceae in Serpentine Soils of Albania and Northwestern Greece, In: Soil and Biota of Serpentine: A World View, Proceedings of the Sixth International Conference on Serpentine Ecology, Northeastern Naturalist, 16 (sp5), 385-404.

  • [6] Bani, A., Pavlova, D., Echevarria, G., & Mullaj, A. (2010). Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafi c soils of the Balkans, Botanica Serbica, 34 (1), 3-14.

  • [7] Brady, K.U., Kruckeberg, A.R., & Bradshaw, H.D. (2005). Evolutionary Ecology of Plant Adaptation to Serpentine Soils, Annual Review of Ecology Evolution and Systematics, 36, 243-266.

  • [8] Brooks, R.R., Morrison, R.S., Reeves, R.D., Dudley, T.R., & Akman, Y. (1979). Hyperaccumulation of Nickel by Alyssum Linnaeus (Cruciferae), Proceedings of the Royal Society of London B, 203, 1153, 387-403.

  • [9] Brooks, R.R., & Radford, C.C. (1978). Nickel Accumulation by European Species of the Genus Alyssum, Proceedings of the Royal Society of London B, 200, 1139, 217-224.

  • [10] Chardot, V., Massoura, S.T., & Echevarria, G. (2005). Phytoextraction Potential of the Nickel Hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea, International Journal of Phytoremediation, 7, 3, 323-335.

  • [11] Chen, P.S., Toribara, T.Y., & Warner, H. (1956). Microdetermination of phosphorus, Analitical Chemistry, 28, 1756-1758.

  • [12] Davies, B.E. (1995). Lead. In B.J. Alloway (Ed.), Heavy metals in soils (pp. 206-223). Blackie Academic, London, 1995.

  • [13] Egner, H., Riehm, H., & Domingo, W.R. (1960). Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nahrstoffzustandes der Boden II. Chemische Extractionmetoden zu Phosphor- und Kaliumbestimmung, Kunlinga Landboukshogskolans Annaler, 26, 199-215.

  • [14] FAO: The Euphrates Pilot Irrigation Project. Methods of soil analysis. Gadeb Soil Laboratory (A laboratory manual), Food and Agriculture Organization, Rome, 1974.

  • [15] Freitas, H., Prasad, M.N.V., & Pratas, J. (2004). Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment, Chemosphere, 54, 11, 1625-1642.

  • [16] Garcia, W.J., Blessin, C.W., Sandford, H.W., & Inglett, G.E. (1979). Translation and accumulation of seven heavy metals in tissues of corn plants grown on sludge-treated strip-mined soil, Journal of Agricultural and Food Chemistry, 27, 5, 1088-1094.

  • [17] Ghaderian, S.M., Mohtadi, A., Rahiminejad, M.R., & Baker, A.J.M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafi cs of Iran, Environmental Pollution, 145, 293-298.

  • [18] Ghaderian, S.M., Mohtadi, A., Rahiminejad, M.R., Reeves, R.D., & Baker, A.J.M. (2007a) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran, Plant and Soil, 293, 91-97.

  • [19] Ghosh, M., & Singh, S.P. (2005). A Review on Phytoremediation of Heavy Metals and Utilization of its Byproducts, Applied Ecology and Environmental Research, 3, 1, 1-18.

  • [20] Harrison, S., Viers, J.H., & Quinn, J.F. (2000). Climatic and spatial patterns of diversity in the serpentine plants of California, Diversity and Distributions, 6, 153-161.

  • [21] Hasko, A., & Çullaj, A. (2001). Nickel hyper-accumulating species and their potential use for the phyto-remediation of polluted areas, Options Méditerranéennes. Série A: Séminaires Méditerranéens, 47, 137-150.

  • [22] Johnston, W. R., & Proctor, J. (1977). Metal concentrations in plants and soils from two British serpentine sites, Plant and Soil, 46, 275-278.

  • [23] Jovanović-Dunjić, R., Diklić, N., & Nikolić, V. (1973). Brassicaceae L. In M. Josifović (Ed.), Flore de la Serbie, Academie Serbe des Sciences et des Arts, 177-394, Belgrade, 1973.

  • [24] Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.), CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2011.

  • [25] Kazakou, E., Adamidis, G.C., Baker, A.J.M., Reeves, R.D., Godino, M., & Dimitrakopoulos, P.G. (2010). Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance, Plant and Soil, 332, 1-2, 369-385.

  • [26] Kruckeberg, A.R. (1954). Plant species in relation to serpentine soils, In: Whittaker, R.H. (Ed.). The Ecology of Serpentine Soils, Ecology, 35, 2, 267-274.

  • [27] Lombini, A., Dinelli, E., Ferrari, C., & Simoni, A. (1998). Plant-soil relationships in the serpentinite screes of Mt Prinzera (Northern Apennines, Italy), Journal of Geochemical Exploration, 64, 1-3, 19-33.

  • [28] McKeague, J.A. (1978). (Ed.), Manual on soil sampling and methods of analysis, Canadian Society of Soil Science, 1978, 66-68.

  • [29] Оbratov, D., Kadović, R., & Mihajlović, N. (1997). Alyssum markgrafi i (Brassicaceae, Capparales) as nickel hiperaccumulator on Goč and Kopaonik serpentinites, Proceedings of the 3rd International Conference on the Development of Forestry & Wood Science/Technology, ICFWST ’97 volume II, Belgrade & Mt. Goč, 1997, 24-28.

  • [30] Obratov-Petković, D., Bjedov, I., & Belanović, S. (2008). The content of heavy metals in the leaves of Hypericum perforatum L. on serpentinite soils in Serbia, Bulletin of the Faculty of Forestry - University of Belgrade, 98, 143-154.

  • [31] Pandolfi ni, T., & Pancaro, L. (1992). Biogeochemical survey of some ophiolitic outcrops in Tuscany, Flora, 187, 341-351.

  • [32] Proctor, J. (2003). Vegetation and soil and plant chemistry on ultramafi c rocks in the tropical Far East, Perspectives in Plant Ecology Evolution & Systematics, 6, 1-2, 105-124.

  • [33] Proctor, J., & Woodell, S.R.J. (1971). The Plant Ecology of Serpentine: I. Serpentine Vegetation of England and Scotland, Journal of Ecology, 59, 2, 375-395.

  • [34] Reeves, R.D. (1988). Nickel and Zinc Accumulation by Species of Thlaspi L., Cochlearia L., and Other Genera of the Brassicaceae, Taxon, 37, 2, 308-318.

  • [35] Reeves, R.D. (1992). The hyperaccumulation of nickel by serpentine plants, In A.J.M. Baker, J., Proctor, R.D. Reeves (Eds.), The Vegetation of Ultramafi c (Serpentine) Soils Intercept Ltd, Andover, 1992, 253-278.

  • [36] Reeves, R.D., & Adigüzel, N. (2008). The Nickel Hyperaccumulating Plants of the Serpentines of Turkey and Adjacent Areas: A Review with New Data, Turkish Journal of Biology, 32, 3, 143-153.

  • [37] Reeves, R.D., Adigüzel, N., & Baker, A.J.M. (2009). Nickel Hyperaccumulation in Bornmuellera kiyakii Aytaç & Aksoy and Associated Plants of the Brassicaceae from Kızıldağ (Derebucak, Konya-Turkey), Turkish Journal of Botany, 33, 33-40.

  • [38] Reeves, R.D., & Baker, A.J.M. (2000). Metal-accumulating plants. In I. Raskin & B.D. Ensley (Eds.), Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, 193-229 John Wiley & Sons, Inc., New York, 2000.

  • [39] Reeves, R.D., Baker, A.J.M., Borhidi, A., & Berazain, R. (1999). Nickel hyperaccumulation in the serpentine fl ora of Cuba, Annals of Botany, 83, 29-38.

  • [40] Reeves, R.D., Brooks, R.R., & Dudley, Th.R. (1983). Uptake of Nickel by Species of Alyssum, Bornmuellera, and Other Genera of Old World Tribus Alysseae, Taxon, 32, 2, 184-192.

  • [41] Reeves, R.D., Brooks, R.R., & Preiss, J.R. (1980). Nickel accumulation by species of Peltaria Jacq. (Cruciferae), Taxon, 29, 5-6, 629-633.

  • [42] Rowell, D.L. (1997). Bodenkunde. Untersuchungsmethoden und ihre Anwendungen, Springer, Berlin, 1997.

  • [43] Shallari, S., Schwartza, C., Haskob, A., & Morela, J.L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania, The Science of The Total Environment, 209, 133-142.

  • [44] Słowik, M., Młynarczyk, Z., & Sobczyński, T. (2011). Mobility of Chromium and Lead Originating from Weaving Industry: Implications for Relative Dating of Lowland River Floodplain Deposits (The Obra River, Poland), Archives of Environmental Protection, 37, 2, 131-150.

  • [45] Stevanović, V., Tan Kit & Iatrou, G. (2003). Distribution of the endemic Balkan fl ora on serpentine I. - obligate serpentine endemics, Plant Systematics and Evolution, 242, 1-4, 149-170.

  • [46] Van Reeuwijk, L.P. (Ed.) (1995). Procedures for Soil Analysis (5th ed.), Technical Paper//International Soil Reference and Information Centre, Wageningen, 1995.

  • [47] Van Reeuwijk, L.P. (Ed.) (2002). Procedures for Soil Analysis (6th ed.), Technical Paper/International Soil Reference and Information Centre, Wageningen, 2002.

  • [48] Vinterhalter, B., & Vinterhalter, D. (2005). Nickel hyperccumulation in shoot cultures of Alyssum markgrafi i, Biologia Plantarum, 49, 121-124.

  • [49] Walker, R.B. (1954). Factors affecting plant growth on serpentine soils. In R.H. Whittaker, (Ed.), The Ecology of Serpentine Soils, Ecology, 35, 2, 259-266.


Journal + Issues